20 resultados para clobetasol propionate


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enhanced biological phosphorus removal (EBPR) has been used at many wastewater treatment plants all over the world for many years. In this study a full-scale sludge with good EBPR was tested with P-release batch tests and combined FISH/MAR (fluorescence in situ hybridisation and microautoradiography). Proposed models of PAOs and GAOs (polyphosphate- and glycogen-accumulating organisms) and microbial methods suggested from studies of laboratory reactors were found to be applicable also on sludge from full-scale plants. Dependency of pH and the uptake of both acetate and propionate were studied and used for calculations for verifying the models and results from microbial methods. All rates found from the batch tests with acetate were higher than in the batch tests with propionate, which was explained by the finding that only those parts of the bacterial community that were able to take up acetate anaerobically were able to take up propionate anaerobically.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing evidence is emerging that the performance of enhanced biological phosphorus removal (EBPR) systems relies on not only the total amount but also the composition of volatile fatty acids (VFAs). Domestic wastewater often contains limited amounts of VFAs with acetic acid typically being the dominating species. Consequently, prefermenters are often employed to generate additional VFAs to meet the demand for carbon by EBPR and/or denitrification processes. Limited knowledge is currently available on the effects of operational conditions on the production rate and composition of VFAs in prefermenters. In this study, a series of controlled batch experiments were conducted with sludge from a full-scale prefermenter to determine the impact of solids concentration, pH and addition of molasses on prefermentation processes. It was found that an increase in solids concentration enhanced total VFA production with an increased propionic acid fraction. The optimal pH for prefermentation was in the range of 6-7 with significant productivity loss when pH was below 5.5. Molasses addition significantly increased the production of VFAs particularly the propionic acid. However, the fermentation rate was likely limited by the biological activity of the sludge rather than by the amount of molasses added.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The LCST transitions of novel N-isopropylacrylamide ( NIPAM) star polymers, prepared using the four-armed RAFT agent pentaerythritoltetrakis(3-(S-benzyltrithiocarbonyl) propionate) (PTBTP) and their hydrolyzed linear arms were studied using H-1 NMR, PFG-NMR, and DLS. The aim was to determine the effect of polymer architecture and the presence of end groups derived from RAFT agents on the LCST. The LCST transitions of star PNIPAM were significantly depressed by the presence of the hydrophobic star core and possibly the benzyl end groups. The effect was molecular weight dependent and diminished once the number of repeating units per arm >= 70. The linear PNIPAM exhibited an LCST of 35 degrees C, regardless of molecular weight; the presence of both hydrophilic and hydrophobic end groups after hydrolysis from the star core was suggested to cancel effects on the LCST. A significant decrease in R-H was observed below the LCST for star and linear PNIPAM and was attributed to the formation of n-clusters. Application of a scaling law to the linear PNIPAM data indicated the cluster size n = 6. Tethering to the hydrophobic star core appeared to inhibit n-cluster formation in the lowest molecular weight stars; this may be due to enhanced stretching of the polymer chains, or the presence of larger numbers of n-clusters at temperatures below those measured.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Candidatus Accumulibacter Phosphatis is widely considered to be a polyphosphate accumulating organism (PAO) of prime importance in enhanced biological phosphorus removal (EBPR) systems. This organism has yet to be isolated, despite many attempts. Previous studies on the biochemical and physiological aspects of this organism, as well as its response to different EBPR operational conditions, have generally relied on the use of mixed culture enrichments. One frequent problem in obtaining highly enriched cultures of this organism is the proliferation of glycogen accumulating organisms (GAO) that can compete with PAOs for limited carbon sources under similar operational conditions. In this study, Candidatus Accumulibacter Phosphatis has been enriched in a lab-scale bioreactor to a level greater than 90% as quantified by fluorescence in situ hyrbridisation (FISH). This is the highest enrichment of this organism that has been reported thus far, and was obtained by alternating the sole carbon source in the feed between acetate and propionate every one to two sludge ages, and operating the bioreactor within a pH range of 7.0-8.0. Simultaneously, the presence of two known groups of GAOs was eliminated under these operational conditions. Excellent phosphorus removal performance and stability were maintained in this system, where the phosphorous concentration in the effluent was below 0.2 mg/L for more than 7 months. When a disturbance was introduced to this system by adding sludge from an enriched GAO culture, Candidatus Accumulibacter Phosphatis once again became highly enriched, while the GAOs were out-competed. This feeding strategy is recommended for future studies focused on describing the physiology and biochemistry of Accumulibacter, where a highly-enriched culture of this organism is of high importance. (c) 2006 Elsevier Ltd. All rights reserved.