35 resultados para available boron


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oilseed rape (Brassica napus) is sensitive to low boron (B) supply, and its growth response to B may be influenced by soil temperature. To test the relationship between B and temperature, oilseed rape (cv. Hyola 42) seedlings were grown at 10 degrees C (low) root zone temperature (RZT) with B supply from deficient to adequate B levels until growth of low B plants just began to slow down. Half of the pots were then transferred to 20 degrees C (warm) RZT for 11 days before they were moved back to 10 degrees C RZT for the final 4 days. Both plant dry mass and B uptake increased after plants were exposed to warm RZT. However, plant B deficiency was exacerbated by warm RZT in low B plants because of increased relative growth rate and shoot-root ratio without a commensurate increase in B uptake rate. It is concluded that RZT above the critical threshold for chilling injury in oilseed rape can nevertheless affect the incidence of B deficiency by altering shoot-root ratio and hence the balance between shoot B demand and B uptake.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coral reefs are in serious decline, and research in support of reef management objectives is urgently needed. Reef connectivity analyses have been highlighted as one of the major future research avenues necessary for implementing effective management initiatives for coral reefs. Despite the number of new molecular genetic tools and the wealth of information that is now available for population-level processes in many marine disciplines, scleractinian coral population genetic information remains surprisingly limited. Here we examine the technical problems and approaches used, address the reasons contributing to this delay in understanding, and discuss the future of coral population marker development. Considerable resources are needed to target the immediate development of an array of relevant genetic markers coupled with the rapid production of management focused data in order to help conserve our globally threatened coral reef resources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boron substitution in carbon materials has been comprehensively investigated using the density functional theory method. It was found that there is a correlation between the stability of the graphene sheet, the distribution of T electrons, the electrostatic potential, and the capability for hydrogen-atom adsorption. Boron substitution destabilizes the graphene structure, increases the density of the electron wave around the substitutional boron atoms, and lowers the electrostatic potential, thus improving the hydrogen adsorption energy on carbon. However, this improvement is only ca. 10-20% instead of a factor of 4 or 5. Our calculations also show that two substitutional boron atoms provide consistent and reliable results, but one substitutional boron results in contradictory conclusions. This is a warning to other computational chemists who work on boron substitution that the conclusion from one substitutional boron might not be reliable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salinity acts to inhibit plant access to soil water by increasing the osmotic strength of the soil solution. As the soil dries, the soil solution becomes increasingly concentrated, further limiting plant access to soil water. An experiment was conducted to examine the effect of salt on plant available water in a heavy clay soil, using a relatively salt tolerant species, wheat ‘Kennedy’, and a more salt sensitive species, chickpea ‘Jimbour’. Sodium chloride was applied to Red Ferrosol at 10 rates from 0 to 3 g/kg. Plants were initially maintained at field capacity. After 3 weeks, plants had become established and watering was ceased. The plants then grew using the water stored in the soil. Once permanent wilting point was reached plants were harvested, and soil water content was measured. The results showed that without salt stress, wheat and chickpea extracted approximately the same amount of water. However, as the salt concentration increased, the ability of chickpea to extract water was severely impaired, while wheat’s ability to extract water was not affected over the range of concentrations examined. Growth of both wheat and chickpea was reduced even from low salt concentrations. Possible explanations for this are that the effect on growth is due to Cl- toxicity and that this occurs at lower concentrations than the osmotic effect of salinity, or that the metabolic demands of maintaining plant water balance and extracting soil water under saline conditions result in reduced growth.

Relevância:

20.00% 20.00%

Publicador: