58 resultados para adaptive estimation
Resumo:
We explore the task of optimal quantum channel identification and in particular, the estimation of a general one-parameter quantum process. We derive new characterizations of optimality and apply the results to several examples including the qubit depolarizing channel and the harmonic oscillator damping channel. We also discuss the geometry of the problem and illustrate the usefulness of using entanglement in process estimation.
Resumo:
The acceptance-probability-controlled simulated annealing with an adaptive move generation procedure, an optimization technique derived from the simulated annealing algorithm, is presented. The adaptive move generation procedure was compared against the random move generation procedure on seven multiminima test functions, as well as on the synthetic data, resembling the optical constants of a metal. In all cases the algorithm proved to have faster convergence and superior escaping from local minima. This algorithm was then applied to fit the model dielectric function to data for platinum and aluminum.
Resumo:
Quantum information theory, applied to optical interferometry, yields a 1/n scaling of phase uncertainty Delta phi independent of the applied phase shift phi, where n is the number of photons in the interferometer. This 1/n scaling is achieved provided that the output state is subjected to an optimal phase measurement. We establish this scaling law for both passive (linear) and active (nonlinear) interferometers and identify the coefficient of proportionality. Whereas a highly nonclassical state is required to achieve optimal scaling for passive interferometry, a classical input state yields a 1/n scaling of phase uncertainty for active interferometry.
Resumo:
The open channel diameter of Escherichia coli recombinant large-conductance mechanosensitive ion channels (MscL) was estimated using the model of Hille (Hille, B. 1968. Pharmacological modifications of the sodium channels of frog nerve. J. Gen. Physiol. 51:199-219)that relates the pore size to conductance. Based on the MscL conductance of 3.8 nS, and assumed pore lengths, a channel diameter of 34 to 46 Angstrom was calculated. To estimate the pore size experimentally, the effect of large organic ions on the conductance of MscL was examined. Poly-L-lysines (PLLs) with a diameter of 37 Angstrom or larger significantly reduced channel conductance, whereas spermine (similar to 15 Angstrom), PLL19 (similar to 25 Angstrom) and 1,1'-bis-(3-(1'-methyl-(4,4'-bipyridinium)-1-yl)-propyl)-4,4'-bipyridinium (similar to 30 Angstrom) had no effect. The smaller organic ions putrescine, cadaverine, spermine, and succinate all permeated the channel. We conclude that the open pore diameter of the MscL is similar to 40 Angstrom, indicating that the MscL has one of the largest channel pores yet described. This channel diameter is consistent with the proposed homohexameric model of the MscL.
Resumo:
Feature selection is one of important and frequently used techniques in data preprocessing. It can improve the efficiency and the effectiveness of data mining by reducing the dimensions of feature space and removing the irrelevant and redundant information. Feature selection can be viewed as a global optimization problem of finding a minimum set of M relevant features that describes the dataset as well as the original N attributes. In this paper, we apply the adaptive partitioned random search strategy into our feature selection algorithm. Under this search strategy, the partition structure and evaluation function is proposed for feature selection problem. This algorithm ensures the global optimal solution in theory and avoids complete randomness in search direction. The good property of our algorithm is shown through the theoretical analysis.
Resumo:
Coastal wetlands are dynamic and include the freshwater-intertidal interface. In many parts of the world such wetlands are under pressure from increasing human populations and from predicted sea-level rise. Their complexity and the limited knowledge of processes operating in these systems combine to make them a management challenge.Adaptive management is advocated for complex ecosystem management (Hackney 2000; Meretsky et al. 2000; Thom 2000;National Research Council 2003).Adaptive management identifies management aims,makes an inventory/environmental assessment,plans management actions, implements these, assesses outcomes, and provides feedback to iterate the process (Holling 1978;Walters and Holling 1990). This allows for a dynamic management system that is responsive to change. In the area of wetland management recent adaptive approaches are exemplified by Natuhara et al. (2004) for wild bird management, Bunch and Dudycha (2004) for a river system, Thom (2000) for restoration, and Quinn and Hanna (2003) for seasonal wetlands in California. There are many wetland habitats for which we currently have only rudimentary knowledge (Hackney 2000), emphasizing the need for good information as a prerequisite for effective management. The management framework must also provide a way to incorporate the best available science into management decisions and to use management outcomes as opportunities to improve scientific understanding and provide feedback to the decision system. Figure 9.1 shows a model developed by Anorov (2004) based on the process-response model of Maltby et al. (1994) that forms a framework for the science that underlies an adaptive management system in the wetland context.
Resumo:
A dynamic modelling methodology, which combines on-line variable estimation and parameter identification with physical laws to form an adaptive model for rotary sugar drying processes, is developed in this paper. In contrast to the conventional rate-based models using empirical transfer coefficients, the heat and mass transfer rates are estimated by using on-line measurements in the new model. Furthermore, a set of improved sectional solid transport equations with localized parameters is developed in this work to reidentified on-line using measurement data, the model is able to closely track the dynamic behaviour of rotary drying processes within a broad range of operational conditions. This adaptive model is validated against experimental data obtained from a pilot-scale rotary sugar dryer. The proposed modelling methodology can be easily incorporated into nonlinear model based control schemes to form a unified modelling and control framework.place the global correlation for the computation of solid retention time. Since a number of key model variables and parameters are identified on-line using measurement data, the model is able to closely track the dynamic behaviour of rotary drying processes within a broad range of operational conditions. This adaptive model is validated against experimental data obtained from a pilot-scale rotary sugar dryer. The proposed modelling methodology can be easily incorporated into nonlinear model based control schemes to form a unified modelling and control framework.