18 resultados para TISSUE ENGINEERING SCAFFOLDS


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Since the introduction of synthetic vascular grafts in the 1960s, only two-stage endothelial cell seeding has demonstrated any significant improvement over conventional vascular grafts, and its benefits have yet to be demonstrated on a large scale. Tissue engineering is a rapidly expanding field with great potential, but efforts to construct tissue-engineered arterial grafts have, to date, yielded little clinical success. This review explores the latest approaches to the construction of a superior vascular graft, along with its potential for use in the clinic in the future.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A broad review of technologically focused work concerning biomolecules at interfaces is presented. The emphasis is on developments in interfacial biomolecular engineering that may have a practical impact in bioanalysis, tissue engineering, emulsion processing or bioseparations. We also review methods for fabrication in an attempt to draw out those approaches that may be useful for product manufacture, and briefly review methods for analysing the resulting interfacial nanostructures. From this review we conclude that the generation of knowledge and-innovation at the nanoscale far exceeds our ability to translate this innovation into practical outcomes addressing a market need, and that significant technological challenges exist. A particular challenge in this translation is to understand how the structural properties of biomolecules control the assembled architecture, which in turn defines product performance, and how this relationship is affected by the chosen manufacturing route. This structure-architecture-process-performance (SAPP) interaction problem is the familiar laboratory scale-up challenge in disguise. A further challenge will be to interpret biomolecular self- and directed-assembly reactions using tools of chemical reaction engineering, enabling rigorous manufacturing optimization of self-assembly laboratory techniques. We conclude that many of the technological problems facing this field are addressable using tools of modem chemical and biomolecular engineering, in conjunction with knowledge and skills from the underpinning sciences. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Although poly(alpha-hydroxy esters), especially the PLGA family of lactic acid/glycolic acid copolymers, have many properties which make them promising materials for tissue engineering, the inherent chemistry of surfaces made from these particular polymers is problematic. In vivo, they promote a strong foreign-body response as a result of nonspecific adsorption and denaturation of serum proteins, which generally results in the formation of a nonfunctional fibrous capsule. Surface modification post-production of the scaffolds is an often-utilized approach to solving this problem, conceptually allowing the formation of a scaffold with mechanical properties defined by the bulk material and molecular-level interactions defined by the modified surface properties. A promising concept is the so-called blank slate: essentially a surface that is rendered resistant to nonspecific protein adsorption but can be readily activated to covalently bind bio-functional molecules such as extracellular matrix proteins, growth factors or polysaccharides. This study focuses on the use of the quartz crystal microbalance (QCM) to follow the layer-by-layer (LbL) electrostatic deposition of high molecular weight hyaluronic acid and chitosan onto PLGA surfaces rendered positively charged by aminolysis, to form a robust, protein-resistant coating. We further show that this surface may be further functionalized via the covalent attachment of collagen IV, which may then be used as a template for the self-assembly of basement membrane components from dilute Matrigel. The response of NIH-3T3 fibroblasts to these surfaces was also followed and shown to closely parallel the results observed in the QCM.