71 resultados para Serotonin Plasma Membrane Transport Proteins


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sulfate (SO42-) is an important anion regulating many metabolic and cellular processes. Maintenance Of SO42- homeostasis occurs in the renal proximal tubule via membrane transport proteins. Two SO42- transporters that have been characterized and implicated in regulating serum SO42- levels are: NaSi- 1, a Na+-SO4 (2-) cotransporter located at the brush border membrane and Sat-1, a SO4 (2-) -anion exchanger located on the basolateral membranes of proximal tubular cells. Unlike Sat-1, for which very few studies have looked at regulation of its expression, NaSi- 1 has been shown to be regulated by various hormones and dietary conditions in vivo. To study this further, NaSj- I (SLC13A1) and Sat- I (SLC26A1) gene structures were determined and recent studies have characterized their respective gene promoters. This review presents the current understanding of the transcriptional regulation of NaSj- I and Sat- 1, and describes possible pathogenetic implications which arise as a consequence of altered SO(4)(2-)homeostasis. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The four mammalian golgins, p230/golgin-245, golgin-97, GCC88 and GCC185 are targeted to trans-Golgi network ITGN) membranes by their C-terminal GRIP domain in a G-protein-dependent process. The Arf-like GTPase, Arl1, has been shown to mediate TGN recruitment of p230/golgin245 and golgin-97 by interaction with their GRIP domains; however, it is not known whether all the TGN golgins bind to Arl1 and whether they are all recruited to the same or different TGN domains. Here we demonstrate differences in membrane binding properties and TGN domain recruitment of the mammalian GRIP domain proteins. Overexpression of full-length GCC185 resulted in the appearance of small punctate structures dispersed in the cytoplasm of transfected cells that were identified as membrane tubular structures by immunoelectron microscopy. The cytoplasmic GCC185-labelled structures were enriched for membrane binding determinants of GCC185 GRIP, whereas the three other mammalian GRIP family members did not colocalize with the GCC185-labelled structures. These GCC185-labelled structures included the TGN resident protein alpha2,6 sialyltransferase and excluded the recycling TGN protein, TGN46. The Golgi stack was unaffected by overexpression of GCC185. Overexpression of both full-length GCC185 and GCC88 showed distinct and nonoverlapping structures. We also show that the GRIP domains of GCC185 and GCC88 differ in membrane binding properties from each other and, in contrast to p230/golgin245 and golgin-97, do not interact with Arl1 in vivo. Collectively these results show that GCC88, GCC185 and p230/golgin245 are recruited to functionally distinct domains of the TGN and are likely to be important for the maintenance of TGN subdomain structure, a critical feature for mediating protein sorting and membrane transport.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

E-cadherin is a cell-cell adhesion protein that is trafficked and delivered to the basolateral cell surface. Membrane-bound carriers for the post-Golgi exocytosis of E-cadherin have not been characterized. Green fluorescent protein (GFP)-tagged E-cadherin (Ecad-GFP) is transported from the trans-Golgi network (TGN) to the recycling endosome on its way to the cell surface in tubulovesicular carriers that resemble TGN tubules labeled by members of the golgin family of tethering proteins. Here, we examine the association of golgins with tubular carriers containing E-cadherin as cargo. Fluorescent GRIP domains from golgin proteins replicate the membrane binding of the full-length proteins and were coexpressed with Ecad-GFP. The GRIP domains of p230/golgin-245 and golgin-97 had overlapping but nonidentical distributions on the TGN; both domains were on TGN-derived tubules but only the golgin-97 GRIP domain coincided with Ecad-GFP tubules in live cells. When the Arl1-binding endogenous golgins, p230/golgin-245 and golgin-97 were displaced from Golgi membranes by overexpression of the p230 GRIP domain, trafficking of Ecad-GFP was inhibited. siRNA knockdown of golgin-97 also inhibited trafficking of Ecad-GFP. Thus, the GRIP domains of p230/golgin-245 and golgin-97 bind discriminately to distinct membrane subdomains of the TGN. Golgin-97 is identified as a selective and essential component of the tubulovesicular carriers transporting E-cadherin out of the TGN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mammary gland is subjected to extensive calcium loads during lactation to support the requirements of milk calcium enrichment. Despite the indispensable nature of calcium homeostasis and signaling in regulating numerous biological functions, the mechanisms by which systemic calcium is transported into milk by the mammary gland are far from completely understood. Furthermore, the implications of calcium signaling in terms of reaulating proliferation, differentiation and apoptosis in the breast are currently uncertain. Deregulation of calcium homeostasis and signaling is associated with mammary gland pathophysiology and as such, calcium transporters, channels and binding proteins represent potential drug targets for the treatment of breast cancer. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sec1p/Munc18 (SM) proteins are believed to play an integral role in vesicle transport through their interaction with SNAREs. Different SM proteins have been shown to interact with SNAREs via different mechanisms, leading to the conclusion that their function has diverged. To further explore this notion, in this study, we have examined the molecular interactions between Munc18c and its cognate SNAREs as these molecules are ubiquitously expressed in mammals and likely regulate a universal plasma membrane trafficking step. Thus, Munc18c binds to monomeric syntaxin4 and the N-terminal 29 amino acids of syntaxin4 are necessary for this interaction. We identified key residues in Munc18c and syntaxin4 that determine the N-terminal interaction and that are consistent with the N-terminal binding mode of yeast proteins Sly1p and Sed5p. In addition, Munc18c binds to the syntaxin4/SNAP23/VAMP2 SNARE complex. Pre-assembly of the syntaxin4/Munc18c dimer accelerates the formation of SNARE complex compared to assembly with syntaxin4 alone. These data suggest that Munc18c interacts with its cognate SNAREs in a manner that resembles the yeast proteins Sly1p and Sed5p rather than the mammalian neuronal proteins Munc18a and syntaxin1a. The Munc18c-SNARE interactions described here imply that Munc18c could play a positive regulatory role in SNARE assembly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Signals generated in response to extracellular stimuli at the plasma membrane are transmitted through cytoplasmic transduction cascades to the nucleus. We report the identification of a pathway directly linking the small GTPase Rab5, a key regulator of endocytosis, to signal transduction and mitogenesis. This pathway operates via APPL1 and APPL2, two Rab5 effectors, which reside on a subpopulation of endosomes. In response to extracellular stimuli such as EGF and oxidative stress, APPL1 translocates from the membranes to the nucleus where it interacts with the nucleosome remodeling and histone deacetylase multiprotein complex NuRD/MeCP1, an established regulator of chromatin structure and gene expression. Both APPL1 and APPL2 are essential for cell proliferation and their function requires Rab5 binding. Our findings identify an endosomal compartment bearing Rab5 and APPL proteins as an intermediate in signaling between the plasma membrane and the nucleus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The trans-Golgi network is the major sorting compartment of the secretory pathway for protein, lipid and membrane traffic. There is a constant flow of membrane and cargo to and from this compartment. Evidence is emerging that the trans-Golgi network has multiple biochemically and functionally distinct subdomains, each of which contributes to the combined sorting and transport requirements of this dynamic compartment. The recruitment of distinct arrays of protein complexes to trans-Golgi network membranes is likely to produce the diversity of structure and biochemistry observed amongst subdomains that serve to generate different carriers or maintain resident trans-Golgi network components. This review discusses how these subdomains may be formed and examines the molecular players involved, including G proteins, clathrin adaptors and golgin tethers. Diversity within these protein families is highlighted and shown to be critical for the functionality of the trans-Golgi network, as a mediator of protein sorting and membrane transport, and for the maintenance of Golgi structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sorting nexins are a large family of proteins that contain the phosphoinositide-binding Phox homology (PX) domain. A number of sorting nexins are known to bind to PtdIns(3)P, which mediates their localization to membranes of the endocytic pathway. We show here that sorting nexin 5 (SNX5) can be recruited to two distinct membrane compartments. In non-stimulated cells, the PX domain was independently targeted to endosomal structures and colocalized with full-length SNX5. The membrane binding of the PX domain was inhibited by the PI 3-kinase inhibitor, wortmannin. Although SNX5 colocalized with a fluid-phase marker and was found predominantly within a PtdIns(3)P-rich endosomal domain, very little colocalization was observed between SNX5 and the PtdIns(3)P-binding protein, EEA1. Using liposome-based binding assays, we have shown that the PX domain of SNX5 interacts not only with PtdIns(3)P but also with PtdIns(3,4)P-2. In response to EGF stimulation, either the SNX5-PX domain or full-length SNX5 was rapidly recruited to the plasma membrane. The localization of SNX1, which does not bind PtdIns(3,4)P-2, was unaffected by EGF signalling. Therefore, SNX5 is localized to a subdomain of the early endosome distinct from EEA1 and, following EGF stimulation and elevation of PtdIns(3,4)P-2, is also transiently recruited to the plasma membrane. These results indicate that SNX5 may have functions not only associated with endosomal sorting but also with the phosphoinositide-signalling pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mammalian retromer protein complex, which consists of three proteins - Vps26, Vps29, and Vps35 - in association with members of the sorting nexin family of proteins, has been implicated in the trafficking of receptors and their ligands within the endosomal/lysosomal system of mammalian cells. A bioinformatic analysis of the mouse genome identified an additional transcribed paralog of the Vps26 retromer protein, which we termed Vps26B. No paralogs were identified for Vps29 and Vps35. Phylogenetic studies indicate that the two paralogs of Vps26 become evident after the evolution of the chordates. We propose that the chordate Vps26-like gene published previously be renamed Vps26A to differentiate it from Vps26B. As for Vps26A, biochemical characterization of Vps26B established that this novel 336 amino acid residue protein is a peripheral membrane protein. Vps26B co-precipitated with Vps35 from transfected cells and the direct interaction between these two proteins was confirmed by yeast 2-hybrid analysis, thereby establishing Vps26B as a subunit of the retromer complex. Within HeLa cells, Vps26B was found in the cytoplasm with low levels at the plasma membrane, while Vps26A was predominantly associated with endosomal membranes. Within A549 cells, both Vps26A and Vps26B co-localized with actin-rich lamellipodia at the cell surface. These structures also co-localized with Vps35. Total internal reflection fluorescence microscopy confirmed the association of Vps26B with the plasma membrane in a stable HEK293 cell line expressing cyan fluorescent protein (CFP)-Vps26B. Based on these observations, we propose that the mammalian retromer complex is located at both endosomes and the plasma membrane in some cell types.