30 resultados para Semidefinite programming
Resumo:
The real-time refinement calculus is an extension of the standard refinement calculus in which programs are developed from a precondition plus post-condition style of specification. In addition to adapting standard refinement rules to be valid in the real-time context, specific rules are required for the timing constructs such as delays and deadlines. Because many real-time programs may be nonterminating, a further extension is to allow nonterminating repetitions. A real-time specification constrains not only what values should be output, but when they should be output. Hence for a program to implement such a specification, it must guarantee to output values by the specified times. With standard programming languages such guarantees cannot be made without taking into account the timing characteristics of the implementation of the program on a particular machine. To avoid having to consider such details during the refinement process, we have extended our real-time programming language with a deadline command. The deadline command takes no time to execute and always guarantees to meet the specified time; if the deadline has already passed the deadline command is infeasible (miraculous in Dijkstra's terminology). When such a realtime program is compiled for a particular machine, one needs to ensure that all execution paths leading to a deadline are guaranteed to reach it by the specified time. We consider this checking as part of an extended compilation phase. The addition of the deadline command restores for the real-time language the advantage of machine independence enjoyed by non-real-time programming languages.
Resumo:
This paper describes a formal component language, used to support automated component-based program development. The components, referred to as templates, are machine processable, meaning that appropriate tool support, such as retrieval support, can be developed. The templates are highly adaptable, meaning that they can be applied to a wide range of problems. Some of the main features of the language are described, including: higher-order parameters; state variable declarations; specification statements and conditionals; applicability conditions and theories; meta-level place holders; and abstract data structures.
Resumo:
-scale vary from a planetary scale and million years for convection problems to 100km and 10 years for fault systems simulations. Various techniques are in use to deal with the time dependency (e.g. Crank-Nicholson), with the non-linearity (e.g. Newton-Raphson) and weakly coupled equations (e.g. non-linear Gauss-Seidel). Besides these high-level solution algorithms discretization methods (e.g. finite element method (FEM), boundary element method (BEM)) are used to deal with spatial derivatives. Typically, large-scale, three dimensional meshes are required to resolve geometrical complexity (e.g. in the case of fault systems) or features in the solution (e.g. in mantel convection simulations). The modelling environment escript allows the rapid implementation of new physics as required for the development of simulation codes in earth sciences. Its main object is to provide a programming language, where the user can define new models and rapidly develop high-level solution algorithms. The current implementation is linked with the finite element package finley as a PDE solver. However, the design is open and other discretization technologies such as finite differences and boundary element methods could be included. escript is implemented as an extension of the interactive programming environment python (see www.python.org). Key concepts introduced are Data objects, which are holding values on nodes or elements of the finite element mesh, and linearPDE objects, which are defining linear partial differential equations to be solved by the underlying discretization technology. In this paper we will show the basic concepts of escript and will show how escript is used to implement a simulation code for interacting fault systems. We will show some results of large-scale, parallel simulations on an SGI Altix system. Acknowledgements: Project work is supported by Australian Commonwealth Government through the Australian Computational Earth Systems Simulator Major National Research Facility, Queensland State Government Smart State Research Facility Fund, The University of Queensland and SGI.