36 resultados para STRUCTURE-ACTIVITY RELATIONSHIPS
Resumo:
Highly selective Cav2.2 voltage-gated calcium channel (VGCC) inhibitors have emerged as a new class of therapeutics for the treatment of chronic and neuropathic pain. Cone snail venoms provided the first drug in class with FDA approval granted in 2005 to Prialt (ω-conotoxin MVIIA, Elan) for the treatment of neuropathic pain. Since this pioneering work, major efforts underway to develop alternative small molecule inhibitors of Cav2.2 calcium channel have met with varied success. This review focuses on the properties of the Cav2.2 calcium channel in different pain states, the action of ω-conotoxins GVIA, MVIIA and CVID, describing their structure-activity relationships and potential as leads for the design of improved Cav2.2 calcium channel therapeutics, and finally the development of small molecules for the treatment of chronic pain.
Resumo:
Chemotherapy in the last century was characterized by cytotoxic drugs that did not discriminate between cancerous and normal cell types and were consequently accompanied by toxic side effects that were often dose limiting. The ability of differentiating agents to selectively kill cancer cells or transform them to a nonproliferating or normal phenotype could lead to cell- and tissue-specific drugs without the side effects of current cancer chemotherapeutics. This may be possible for a new generation of histone deacetylase inhibitors derived from amino acids. Structure-activity relationships are now reported for 43 compounds derived from 2-aminosuberic acid that kill a range of cancer cells, 26 being potent cytotoxins against MM96L melanoma cells (IC50 20 nM-1 mu M), while 17 were between 5- and 60-fold more selective in killing MM96L melanoma cells versus normal (neonatal foreskin fibroblasts, NFF) cells. This represents a 10- to 100-fold increase in potency and up to a 10-fold higher selectivity over previously reported compounds derived from cysteine (J. Med. Chem. 2004, 47, 2984). Selectivity is also an underestimate, because the normal cells, NFF, are rarely all killed by the drugs that also induce selective blockade of the cell cycle for normal but not cancer cells. Selected compounds were tested against a panel of human cancer cell lines (melanomas, prostate, breast, ovarian, cervical, lung, and colon) and found to be both selective and potent cytotoxins (IC50 20 nM-1 mu M). Compounds in this class typically inhibit human histone deacetylases, as evidenced by hyperacetylation of histones in both normal and cancer cells, induce expression of p21, and differentiate surviving cancer cells to a nonproliferating phenotype. These compounds may be valuable leads for the development of new chemotherapeutic agents.
Resumo:
One of the most important determinants of dermatological and systemic penetration after topical application is the delivery or flux of solutes into or through the skin. The maximum dose of solute able to be delivered over a given period of time and area of application is defined by its maximum flux (J(max), mol per cm(2) per h) from a given vehicle. In this work, J(max) values from aqueous solution across human skin were acquired or estimated from experimental data and correlated with solute physicochemical properties. Whereas epidermal permeability coefficients (k(p)) are optimally correlated to solute octanol-water partition coefficient (K-ow) and molecular weight (MW) was found to be the dominant determinant of J(max) for this literature data set: log J(max)=-3.90-0.0190MW (n=87, r(2)=0.847, p
Resumo:
Defensins are mediators of mammalian innate immunity, and knowledge of their structure-function relationships is essential for understanding their mechanisms of action. We report here the NMR solution structures of the mouse Paneth cell α-defensin cryptdin-4 (Crp4) and a mutant (E15D)-Crp4 peptide, in which a conserved Glu15 residue was replaced by Asp. Structural analysis of the two peptides confirms the involvement of this Glu in a conserved salt bridge that is removed in the mutant because of the shortened side chain. Despite disruption of this structural feature, the peptide variant retains a well defined native fold because of a rearrangement of side chains, which result in compensating favorable interactions. Furthermore, salt bridge-deficient Crp4 mutants were tested for bactericidal effects and resistance to proteolytic degradation, and all of the variants had similar bactericidal activities and stability to proteolysis. These findings support the conclusion that the function of the conserved salt bridge in Crp4 is not linked to bactericidal activity or proteolytic stability of the mature peptide.
Resumo:
Molecular modelling of human CYP1B1 based on homology with the mammalian P450, CYP2C5, of known three-dimensional structure is reported. The enzyme model has been used to investigate the likely mode of binding for selected CYP1B1 substrates, particularly with regard to the possible effects of allelic variants of CYP1B1 on metabolism. In general, it appears that the CYP1B1 model is consistent with known substrate selectivity for the enzyme, and the sites of metabolism can be rationalized in terms of specific contacts with key amino acid residues within the CYP1B1 heme locus. Further-more, a mode of binding interaction for the inhibitor, a-naphthoflavone, is presented which accords with currently available information. The current paper shows that a combination of molecular modelling and experimental determinations on the substrate metabolism for CYP1B1 allelic variants can aid in the understanding of structure-function relationships within P450 enzymes. (C) 2003 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Investigations of a southern Australian marine sponge, Oceanapia sp., have yielded two new methyl branched bisthiocyanates, thiocyanatins D-1 (3a) and D-2 (3b), along with two new thiocarbamate thiocyanates, thiocyanatins E-l (4a) and E-2 (4b). The new thiocyanatins belong to a rare class of bioactive marine metabolite previously only represented by thiocyanatins A-C (1, 2a/b). Structures were assigned on the basis of detailed spectroscopic analysis, with comparisons to the known bisthiocyanate thiocyanatin A (1) and synthetic model compounds (5-7). The thiocyanatins exhibit potent nematocidal activity, and preliminary structure-activity relationship investigations have confirmed key characteristics of the thiocyanatin pharmacophore.
Resumo:
Basic structure studies of the biosynthetic machinery of the cell by electron microscopy (EM) have underpinned much of our fundamental knowledge in the areas of molecular cell biology and membrane traffic. Driven by our collective desire to understand how changes in the complex and dynamic structure of this enigmatic organelle relate to its pivotal roles in the cell, the comparatively high-resolution glimpses of the Golgi and other compartments of the secretory pathway offered to us through EM have helped to inspire the development and application of some of our most informative, complimentary (molecular, biochemical and genetic) approaches. Even so, no one has yet even come close to relating the basic molecular mechanisms of transport, through and from the Golgi, to its ultrastructure, to everybody's satisfaction. Over the past decade, EM tomography has afforded new insights into structure -function relationships of the Golgi and provoked a re-evaluation of older paradigms. By providing a set of tools for structurally dissecting cells at high-resolution in three-dimensions (3D), EM tomography has emerged as a method for studying molecular cell biology in situ. As we move rapidly toward the establishment of molecular atlases of organelles through advances in proteomics and genomics, tomographic studies of the Golgi offer the tantalizing possibility that one day, we will be able to map the spatio-temporal coordinates of Golgi-related proteins and lipids accurately in the context of 4D cellular space. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The complex mixture of biologically active peptides that constitute the venom of Conus species provides a rich source of ion channel neurotoxins. These peptides, commonly known as conotoxins, exhibit a high degree of selectivity and potency for different ion channels and their subtypes making them invaluable tools for unravelling the secrets of the nervous system. Furthermore, several conotoxin molecules have profound applications in drug discovery, with some examples currently undergoing clinical trials. Despite their relatively easy access by chemical synthesis, rapid access to libraries of conotoxin analogues for use in structure-activity relationship studies still poses a significant limitation. This is exacerbated in conotoxins containing multiple disulfide bonds, which often require synthetic strategies utilising several steps. This review will examine the structure and activity of some of the known classes of conotoxins and will highlight their potential as neuropharmacological tools and as drug leads. Some of the classical and more recent approaches to the chemical synthesis of conotoxins, particularly with respect to the controlled formation of disulfide bonds will be discussed in detail. Finally, some examples of structure-activity relationship studies will be discussed, as well as some novel approaches for designing conotoxin analogues.
Resumo:
Three natriuretic-like peptides (TNP-a, TNP-b, and TNP-c) were isolated from the venom of Oxyuranus microlepidotus (inland taipan) and were also present in the venoms of Oxyuranus scutellatus canni (New Guinea taipan) and Oxyuranus scutellatus scutellatus (coastal taipan). They were isolated by HPLC, characterised by mass spectrometry and Edman analysis, and consist of 35-39 amino acid residues. These molecules differ from ANP/BNP through replacement of invariant residues within the 17-membered ring structure and by inclusion of proline residues in the C-terminal tail. TNP-c was equipotent to ANP in specific GC-A assays or aortic ring assays whereas TNP-a and TNP-b were either inactive (GC-A over-expressing cells and endothelium-denuded aortic rings) or weakly active (endothelium-in tact aortic rings). TNP-a and TNP-b were also unable to competitively inhibit the binding of TNP-c in endothelium-denuded aortae (GC-A) or endothelium-in tact aortae (NPR-C). Thus, these naturally occurring isoforms provide a new platform for further investigation of structure-function relationships of natriuretic peptides. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Cyclotides are a recently discovered class of proteins that have a characteristic head-to-tail cyclized backbone stabilized by a knotted arrangement of three disulfide bonds. They are exceptionally resistant to chemical, enzymatic and thermal treatments because of their unique structural scaffold. Cyclotides have a range of bio-activities, including uterotonic, anti-HIV, anti-bacterial and cytotoxic activity but their insecticidal properties suggest that their natural physiological role is in plant defense. They are genetically encoded as linear precursors and subsequently processed to produce mature cyclic peptides but the mechanism by which this occurs remains unknown. Currently most cyclotides are obtained via direct extraction from plants in the Rubiaceae and Violaceae families. To facilitate the screening of cyclotides for structure-activity studies and to exploit them in drug design or agricultural applications a convenient route for the synthesis of cyclotides is vital. In this review the current chemical, recombinant and biosynthetic routes to the production of cyclotides are discussed.
Resumo:
In this article, we review the current state of knowledge concerning the physical and chemical properties of the eumelanin pigment. We examine properties related to its photoprotective functionality, and draw the crucial link between fundamental molecular structure and observable macroscopic behaviour. Where necessary, we also briefly review certain aspects of the pheomelanin literature to draw relevant comparison. A full understanding of melanin function, and indeed its role in retarding or promoting the disease state, can only be obtained through a full mapping of key structure-property relationships in the main pigment types. We are engaged in such an endeavor for the case of eumelanin.
Resumo:
Lines of transgenic tobacco have been generated that are transformed with either the wild-type peanut peroxidase prxPNC2 cDNA, driven by the CaMV3 5S promoter (designated 35S::prxPNC2-WT) or a mutated PNC2 cDNA in which the asparagine residue (Asn(189)) associated with the point of glycan attachment (Asn(189)) has been replaced with alanine (designated 35S::prxPNC2-M). PCR, using genomic DNA as template, has confirmed the integration of the 35S::prxPNC2-WT and 35::prxPNC2-M constructs into the tobacco genome, and western analysis using anti-PNC2 antibodies has revealed that the prxPNC2-WT protein product (PNC2-WT) accumulates with a molecular mass of 34,670 Da, while the prxPNC2-M protein product (PNC2-M) accumulates with a molecular mass of 32,600 Da. Activity assays have shown that both PNC2-WT and PNC2-M proteins accumulate preferentially in the ionically-bound cell wall fraction, with a significantly higher relative accumulation of the PNC2-WT isoenzyme in the ionically-bound fraction when compared with the PNC2-M isoform. Kinetic analysis of the partially purified PNC2-WT isozyme revealed an affinity constant (apparent K-m) of 11.2 mM for the reductor substrate guaiacol and 1.29 mM for H2O2, while values of 11.9 mM and 1.12 mM were determined for the PNC2-M isozyme. A higher Arrenhius activation energy (E,,) was determined for the PNC2-M isozyme (22.9 kJ mol(-1)), when compared with the PNC2-WT isozyme (17.6 kJ mol(-1)), and enzyme assays have determined that the absence of the glycan influences the thermostability of the PNC2-M isozyme. These results are discussed with respect to the proposed roles of N-linked glycans attached to plant peroxidases. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Based on a newly established sequencing strategy featured by its efficiency, simplicity, and easy manipulation, the sequences of four novel cyclotides (macrocyclic knotted proteins) isolated from an Australian plant Viola hederaceae were determined. The three-dimensional solution structure of V. hederaceae leaf cyclotide-1 ( vhl-1), a leaf-specific expressed 31-residue cyclotide, has been determined using two-dimensional H-1 NMR spectroscopy. vhl-1 adopts a compact and well defined structure including a distorted triple-stranded β- sheet, a short 310 helical segment and several turns. It is stabilized by three disulfide bonds, which, together with backbone segments, form a cyclic cystine knot motif. The three-disulfide bonds are almost completely buried into the protein core, and the six cysteines contribute only 3.8% to the molecular surface. A pH titration experiment revealed that the folding of vhl-1 shows little pH dependence and allowed the pK(a) of 3.0 for Glu(3) and ∼ 5.0 for Glu(14) to be determined. Met(7) was found to be oxidized in the native form, consistent with the fact that its side chain protrudes into the solvent, occupying 7.5% of the molecular surface. vhl-1 shows anti-HIV activity with an EC50 value of 0.87 μ m.
Resumo:
A large number of macrocyclic miniproteins with diverse biological activities have been isolated from the Rubiaceae, Violaceae, and Cucurbitaceae plant families in recent years. Here we report the three-dimensional structure determined using H-1 NMR spectroscopy and demonstrate potent insecticidal activity for one of these peptides, kalata B2. This peptide is one of the major components of an extract from the leaves of the plant Oldenlandia affinis. The structure consists of a distorted triple-stranded beta-sheet and a cystine knot arrangement of the disulfide bonds and is similar to those described for other members of the cyclotide family. The unique cyclic and knotted nature of these molecules makes them a fascinating example of topologically complex proteins. Examination of the sequences reveals that they can be separated into two subfamilies, one of which contains a larger number of positively charged residues and has a bracelet-like circularization of the backbone. The second subfamily contains a backbone twist due to a cis-peptidyl-proline bond and may conceptually be regarded as a molecular Mobius strip. Kalata B2 is the second putative member of the Mobius cyclotide family to be structurally characterized and has a cis-peptidyl-proline bond, thus validating the suggested name for this subfamily of cyclotides. The observation that kalata B2 inhibits the growth and development of Helicoverpa armigera larvae suggests a role for the cyclotides in plant defense. A comparison of the sequences and structures of kalata B1 and B2 provides insight into the biological activity of these peptides.
Synthesis, crystal structure and herbicidal activity of mimics of intermediates of the KARI reaction
Resumo:
Two mimics of the intermediate in the reaction catalyzed by ketol-acid reductoisomerase (KARI) were synthesized. Their structures were established on the basis of elemental analyses, IR, H-1 NMR and GC/mass detector. The crystal structure of compound 2 was found to be a substituted dioxane, formed by the condensation of two molecules. The two compounds showed some herbicidal activity on the basis of tests using rape root and barnyard grass growth inhibition. However, the herbicidal effect was weaker in greenhouse tests. (c) 2004 Society of Chemical Industry.