37 resultados para Receptors, Antigen, T-Cell -- immunology
Resumo:
The failure to mount effective immunity to virus variants in a previously virus-infected host is known as original antigenic sin. We have previously shown that prior immunity to a virus capsid protein inhibits induction by immunization of an IFN-gamma CD8(+) T cell response to an epitope linked to the capsid protein. We now demonstrate that capsid protein-primed CD4(+) T cells secrete IL-10 in response to capsid protein presented by dendritic cells, and deviate CD8+ T cells responding to a linked MHC class I-restricted epitope to reduce IFN-gamma production. Neutralizing IL-10 while delivering further linked epitope, either in vitro or in vivo, restores induction by immunization of an Ag-specific IFN-gamma response to the epitope. This finding demonstrates a strategy for overcoming inhibition of MHC class I epitopes upon immunization of a host already primed to Ag, which may facilitate immunotherapy for chronic viral infection or cancer.
Resumo:
In Hodgkin lymphoma (HL), the malignant Hodgkin Reed-Sternberg (HRS) cells constitute only 0.5% of 10% of the diseased tissue. The surrounding cellular infiltrate is enriched with T cells that are hypothesized to modulate antitumor immunity. We show that a marker of regulatory T cells, LAG-3, is strongly expressed on infiltrating lymphocytes present in proximity to HRS cells. Circulating regulatory T cells (CD4(+) CD25(hi) CD45 ROhi, CD4(+) CTLA4(hi), and CD4(+) LAG-3(hi)) were elevated in HL patients with active disease when compared with remission. Longitudinal profiling of EBV-specific CD8(+) T-cell responses in 94 HL patients revealed a selective loss of interferon-gamma expression by CD8(+) T cells specific for latent membrane proteins 1 and 2 (LMP1/2), irrespective of EBV tissue status. Intratumoral LAG-3 expression was associated with EBV tissue positivity, whereas FOXP3 was linked with neither LAG-3 nor EBV tissue status. The level of LAG-3 and FOXP3 expression on the tumor-infiltrating lymphocytes was coincident with impairment of LMP1/2-specific T-cell function. In vitro pre-exposure of peripheral blood mono-nuclear cells to HRS cell line supernatant significantly increased the expansion of regulatory T cells and suppressed LMP-specific T-cell responses. Deletion of CD4(+) LAG-3(+) T cells enhanced LMP-specific reactivity. These findings indicate a pivotal role for regulatory T cells and LAG-3 in the suppression of EBV-specific cell-mediated immunity in HL.
Resumo:
Subunit vaccines, based on one or more epitopes, offer advantages over whole vaccines in terms of safety but are less antigenic. We investigated whether fusion of the cytokine interleukin-2 (IL-2) to influenza-derived subunit antigens could increase their antigenicity. The fusion of IL-2 to the subunit antigens increased their antigenicity in vitro. Encapsulation of the subunit antigen in liposomes also increased its antigenicity in vitro, yet encapsulation of the subunit IL-2 fusion did not. The use of anti-IL-2 receptor beta (IL-2Rbeta) antibody to block the receptor subunit on macrophages suggested that the adjuvancy exerted by IL-2 in our in vitro system is due to, at least in part, a previously unreported IL-2Rbeta-mediated antigen uptake mechanism.
Resumo:
The granulocyte colony-stimulating factor (G-CSF) and Fit-3 receptor agonist progenipoietin-1 (ProGP-1) has potent effects on dendritic cell (DC) expansion and may be an alternative to G-CSF for the mobilization of stem cells for allogeneic stem cell transplantation (SCT). We studied the ability of stem cell grafts mobilized with this agent to induce graft-versus-host disease (GVHD) to minor and major histocompatibility antigens in the well-described B6 --> B6D2F1 SCT model. ProGP-1, G-CSIF, or control diluent was administered to donor B6 mice. ProGP-1 expanded all cell lineages in the spleen, and unseparated splenocytes from these animals produced large amounts of interleukin 10 (IL-10) and transforming growth factor beta (TGFbeta) whereas the expression of T-cell adhesion molecules was diminished. Transplantation survival was 0%, 50%, and 90% in recipients of control-, G-CSF-, and ProGP-1-treated allogeneic donor splenocytes, respectively (P < .0001). Donor pretreatment with ProGP-1 allowed a 4-fold escalation in T-cell dose over that possible with G-CSF. Donor CD4 T cells from allogeneic SCT recipients of ProGP-1 splenocytes demonstrated an anergic response to host antigen, and cytokine production (interferon gamma [IFNγ], IL-4, and IL-10) was also reduced while CD8 T-cell cytotoxicity to host antigens remained intact. Neither CD11c(hi) DCs nor CD11c(dim)/B220(hi) DCs from ProGP-1-treated animals conferred protection from GVHD when added to control spleen. Conversely, when equal numbers of purified T cells from control-, G-CSF-, or ProGP-1-treated allogeneic donors were added to allogeneic T-cell-depleted control spleen, survival at day 60 was 0%, 15%, and 90%, respectively (P < .0001). The improved survival in recipients of ProGP-1 T cells was associated with reductions in systemic tumor necrosis factor alpha generation and GVHD of the gastrointestinal tract. We conclude that donor pretreatment with ProGP-1 is superior to G-CSIF for the prevention of GVHD after allogeneic SCT, primarily due to incremental affects on T-cell phenotype and function
Resumo:
Classic Hodgkin's lymphoma (HL) tissue contains a small population of morphologically distinct malignant cells called Hodgkin and Reed-Sternberg (HRS) cells, associated with the development of HL. Using 3'-rapid amplification of cDNA ends ( RACE) we identified an alternative mRNA for the DEC-205 multilectin receptor in the HRS cell line L428. Sequence analysis revealed that the mRNA encodes a fusion protein between DEC-205 and a novel C-type lectin DCL-1. Although the 7.5-kb DEC-205 and 4.2-kb DCL-1 mRNA were expressed independently in myeloid and B lymphoid cell lines, the DEC-205/DCL-1 fusion mRNA (9.5 kb) predominated in the HRS cell lines ( L428, KM-H2, and HDLM-2). The DEC-205 and DCL-1 genes comprising 35 and 6 exons, respectively, are juxtaposed on chromosome band 2q24 and separated by only 5.4 kb. We determined the DCL-1 transcription initiation site within the intervening sequence by 5'-RACE, confirming that DCL-1 is an independent gene. Two DEC-205/DCL-1 fusion mRNA variants may result from cotranscription of DEC-205 and DCL-1, followed by splicing DEC-205 exon 35 or 34-35 along with DCL-1 exon 1. The resulting reading frames encode the DEC-205 ectodomain plus the DCL-1 ectodomain, the transmembrane, and the cytoplasmic domain. Using DCL-1 cytoplasmic domain-specific polyclonal and DEC-205 monoclonal antibodies for immunoprecipitation/Western blot analysis, we showed that the fusion mRNA is translated into a DEC-205/DCL-1 fusion protein, expressed in the HRS cell lines. These results imply an unusual transcriptional control mechanism in HRS cells, which cotranscribe an mRNA containing DEC-205 and DCL-1 prior to generating the intergenically spliced mRNA to produce a DEC-205/DCL-1 fusion protein.
Resumo:
Advanced metastatic melanoma is incurable by standard treatments, but occasionally responds to immunotherapy. Recent trials using dendritic cells (DC) as a cellular adjuvant have concentrated on defined peptides as the source of antigens, and rely on foreign proteins as a source of help to generate a cell-mediated immune response. This approach limits patient accrual, because currently defined, non-mutated epitopes are restricted by a small number of human leucocyte antigens. It also fails to take advantage of mutated epitopes peculiar to the patient's own tumour, and of CD4(+) T lymphocytes as potential effectors of anti-tumour immunity. We therefore sought to determine whether a fully autologous DC vaccine is feasible, and of therapeutic benefit. Patients with American Joint Cancer Committee stage IV melanoma were treated with a fully autologous immunotherapy consisting of monocyte-derived DC, matured after culture with irradiated tumour cells. Of 19 patients enrolled into the trial, sufficient tumour was available to make treatments for 17. Of these, 12 received a complete priming phase of six cycles of either 0.9X10(6) or 5X10(6) DC/intradermal injection, at 2-weekly intervals. Where possible, treatment continued with the lower dose at 6-weekly intervals. The remaining five patients could not complete priming, due to progressive disease. Three of the 12 patients who completed priming have durable complete responses (average duration 3 5 months +), three had partial responses, and the remaining six had progressive disease (WHO criteria). Disease regression was not correlated with dose or with the development of delayed type hypersensitivity responses to intradermal challenge with irradiated, autologous tumour. However, plasma S-100B levels prior to the commencement of treatment correlated with objective clinical response (P = 0.05) and survival (log rank P < 0.001). The treatment had minimal side-effects and was well tolerated by all patients. Mature, monocyte-derived DC preparations exposed to appropriate tumour antigen sources can be reliably produced for patients with advanced metastatic melanoma, and in a subset of those patients with lower volume disease their repeated administration results in durable complete responses.
Resumo:
The BZLF1 antigen of Epstein-Barr virus includes three overlapping sequences of different lengths that conform to the binding motif of human leukocyte antigen (HLA) B*3501. These 9-mer ((56)LPOGQLTAy(64)), 11-mer ((54)EPLPQGQLTAy(64)), and 13-mer ((52)LPEPLPQGQLTAY(64)) peptides all bound well to B*3501; however, the CTL response in individuals expressing this HILA allele was directed strongly and exclusively towards the 11-mer peptide. In contrast, EBV-exposed donors expressing HLA B*3503 showed no significant CTL response to these peptides because the single amino acid difference between B*3501 and B*3503 within the F pocket inhibited HLA binding by these peptides. The extraordinarily long 13-mer peptide was the target for the CTL response in individuals expressing B*3508, which differs from B*3501 at a single position within the D pocket (B*3501, 156 Leucine; B*3508, 156 Arginine). This minor difference was shown to enhance binding of the 13-mer peptide, presumably through a stabilizing interaction between the negatively charged glutamate at position 3 of the peptide and the positively charged arginine at HLA position 156. The 13-mer epitope defined in this study represents the longest class I-binding viral epitope identified to date as a minimal determinant. Furthermore, the potency of the response indicates that peptides of this length do not present a major structural barrier to CTL recognition.
Resumo:
Background: Although immunization with tumor antigens can eliminate many transplantable tumors in animal models, immune effector mechanisms associated with successful immunotherapy of epithelial cancers remain undefined. Methods: Skin from transgenic mice expressing the cervical cancer-associated tumor antigen human papillornavirus type 16 (HPV16) E6 or E7 proteins from a keratin 14 promoter was grafted onto syngeneic, non-transgenic mice. Skin graft rejection was measured after active immunization with HPV16 E7 and adoptive transfer of antigen-specific T cells. Cytokine secretion of lymphocytes from mice receiving skin grafts and immunotherapy was detected by enzyme-linked immunosorbent assay, and HPV16 E7-specific memory CD8(+) T cells were detected by flow cytometry and ELISPOT. Results: Skin grafts containing HPV16 E6- or E7-expressing keratinocytes were not rejected spontaneously or following immunization with E7 protein and adjuvant. Adoptive transfer of E7-specific T-cell receptor transgenic CD8(+) T cells combined with immunization resulted in induction of antigen-specific interferon gamma-secreting CD8(+) T cells and rejection of HPV16 E7-expressing grafts. Specific memory CD8(+) T cells were generated by immunotherapy. However, a further HPV16 E7 graft was rejected from animals with memory T cells only after a second E7 immunization. Conclusions: Antigen-specific CD8(+) T cells can destroy epithelium expressing HPV16 E7 tumor antigen, but presentation of E7 antigen from skin is insufficient to reactivate memory CD8(+) T cells induced by immunotherapy. Thus, effective cancer immunotherapy in humans may need to invoke sufficient effector as well as memory T cells.
Resumo:
The efficient in vitro expansion of antigen-specific CD8(+) cytotoxic T lymphocytes (CTL) for use in adoptive immunotherapy represents an important clinical goal. Furthermore, the avidity of expanded CTL populations often correlates closely with clinical outcome. In our study, high-avidity CTL lines could be expanded ex vivo from an antigen-primed animal using low peptide concentration, and intermediate peptide concentrations favored the generation of lower avidity CTL. Further increases in peptide concentration during culture inhibited the expansion of all peptide-specific CD8(+) cells. In contrast, a single amino acid variant peptide efficiently generated functional CTL populations at high or low peptide concentration, which responded to wild-type epitope with the lowest average avidity seen in this study. We propose that for some peptides, the efficient generation of low-avidity CTL responses will be favored by stimulation with altered peptide rather than high concentrations of wild-type epitope. In addition, some variant peptides designed to have improved binding to major histocompatibility complex class I may reduce rather than enhance the functional avidity for the wild-type peptide of ex vivo-expanded CTL. These observations are relevant to in vitro expansion of CTL for immunotherapy and strategies to elicit regulatory or therapeutic immunity to neo-self-antigen when central tolerance has eliminated high-avidity, cognate T cells.
Resumo:
Aims: An important consideration in the design of a tumour vaccine is the ability of tumour-specific cytotoxic T lymphocytes (CTL) to recognise unmanipulated tumour cells in vivo. To determine whether B-CLL might use an escape strategy, the current studies compared B-CLL and normal B cell MHC class I expression. Methods: Flow cytometry, TAP allele PCR and MHC class I PCR were used. Results: While baseline expression of MHC class I did not differ, upregulation of MHC class I expression by B-CLL cells in response to IFN-gamma was reduced. No deletions or mutations of TAP 1 or 2 genes were detected. B-CLL cells upregulated TAP protein expression in response to IFN-gamma. Responsiveness of B-CLL MHC class I mRNA to IFN-gamma was not impaired. Conclusions: The data suggest that MHC class I molecules might be less stable at the cell surface in B-CLL than normal B cells, as a result of the described release of beta(2)m and beta(2)m-free class I heavy chains from the membrane. This relative MHC class I expression defect of B-CLL cells may reduce their susceptibility to CTL lysis in response to immunotherapeutic approaches.
Resumo:
Infection of humans with the West Nile flavivirus principally occurs via tick and mosquito bites. Here, we document the expression of antigen processing and presentation molecules in West Nile virus (WNV)-infected human skin fibroblast (HFF) cells. Using a new Flavivirus-specific antibody, 4G4, we have analyzed cell surface human leukocyte antigen (HLA) expression on virus-infected cells at a single cell level. Using this approach, we show that West Nile Virus infection alters surface HLA expression on both infected HFF and neighboring uninfected HFF cells. Interestingly, increased surface HLA evident on infected HFF cultures is almost entirely due to virus-induced interferon (IFN)alpha/beta because IFNalpha/beta-neutralizing antibodies completely prevent increased surface HLA expression. In contrast, RT-PCR analysis indicates that WNV infection results in increased mRNAs for HLA-A, -B, and -C genes, and HLA-associated molecules low molecular weight polypeptide-2 (LMP-2) and transporter associated with antigen presentation-1 (TAP-1), but induction of these mRNAs is not diminished in HFF cells cultured with IFNalpha/beta-neutralizing antibodies. Taken together, these data support the idea that that both cytokine-dependent and cytokine-independent mechanisms account for WNV-induced HLA expression in human skin fibroblasts. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
The classical paradigm for T cell dynamics suggests that the resolution of a primary acute virus infection is followed by the generation of a long-lived pool of memory T cells that is thought to be highly stable. Very limited alteration in this repertoire is expected until the immune system is re-challenged by reactivation of latent viruses or by cross-reactive pathogens. Contradicting this view, we show here that the T cell repertoire specific for two different latent herpes viruses in the peripheral blood displayed significant contemporaneous co-fluctuations of virus-specific CD8(+) T cells. The coordinated responses to two different viruses suggest that the fluctuations within the T cell repertoire may be driven by sub-clinical viral reactivation or a more generalized 'bystander' effect. The later contention was supported by the observation that, while absolute number of CD3(+) T cells and their subsets and also the cell surface phenotype of antigen-specific T cells remained relatively constant, a loss of CD62L expression in the total CD8(+) T cell population was coincident with the expansion of tetramer-positive virus-specific T cells. This study demonstrates that the dynamic process of T cell expansion and contractions in persistent viral infections is not limited to the acute phase of infection, but also continues during the latent phase of infection.