35 resultados para Protein-kinase-c
Investigation of signaling pathways that mediate the inotropic effect of urotensin-II in human heart
Resumo:
Objective: This study investigated signaling pathways that may contribute to the potent positive inotropic effect of human urotensin-II (hU-II) in human isolated right atrial trabeculae obtained from patients with coronary artery disease. Methods: Trabeculae were set up in tissue baths and stimulated to contract at 1 Hz. Tissues were incubated with 20 nM hU-II with or without phorbol 12-myristate 13-acetate (PMA, 10 muM) to desensitize PKC, the PKC inhibitor chelerythrine (10 muM), 10 muM 4alpha-phorbol that does not desensitize PKC, the myosin light chain kinase inhibitor wortmannin (50 nM, 10 muM), or the Rho kinase inhibitor Y-27632 (0.1 - 10 muM). Activated RhoA was determined by affinity immunoprecipitation, and phosphorylation of signaling proteins was determined by SDS-PAGE. Results: hU-II caused a potent positive inotropic response in atrial trabeculae, and this was concomitant with increased phosphorylation of regulatory myosin light chain (MLC-2, 1.8 +/- 0.4-fold, P < 0.05, n = 6) and PKCalpha/betaII (1.4 +/- 0.2-fold compared to non-stimulated controls, P < 0.05, n = 7). Pretreatment of tissues with PMA caused a marked reduction in the inotropic effect of hU-II, but did not affect hU-II-mediated phosphorylation of MLC-2. The inotropic response was inhibited by chelerythrine, but not 4alpha-phorbol or wortmannin. Although Y-27632 also reduced the positive inotropic response to hU-II, this was associated with a marked reduction in basal force of contraction. RhoA. GTP was immunoprecipitated in tissues pretreated with or without hU-II, with findings showing no detectable activation of RhoA in the agonist stimulated tissues. Conclusions: The findings indicated that hU-II increased force of contraction in human heart via a PKC-dependent mechanism and increased phosphorylation of MLC-2, although this was independent of PKC. The positive inotropic effect was independent of myosin light chain kinase and RhoA-Rho kinase signaling pathways. (C) 2004 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.
Resumo:
Urotensin-II (UII) is a highly potent endogenous peptide within the cardiovascular system. Through stimulation of Galphaq-coupled UT receptors, UII mediates contraction of vascular smooth muscle and endothelial-dependent vasorelaxation, and positive inotropy in human right atrium and ventricle. A pathogenic role of the UT receptor system is emerging in cardiovascular disease states, with evidence for upregulation of the UT receptor system in patients with congestive heart failure (CHF), pulmonary hypertension, cirrhosis and portal hypertension, and chronic renal failure. In vitro and in vivo studies show that under pathophysiological conditions, UII might contribute to cardiomyocyte hypertrophy, extracellular matrix production, enhanced vasoconstriction, vascular smooth muscle cell hyperplasia, and endothelial cell hyper-permeability. Single nucleotide polymorphisms of the UII gene may also impart a genetic predisposition of patients to diabetes. Therefore, the UT receptor system is a potential therapeutic target in the treatment of cardiac, pulmonary, and renal diseases. UT receptor antagonists are currently being developed to prevent and/or reverse the effects of over-activated UT receptors by the endogenous ligand. This review describes UII peptide and converting enzymes, and UT receptors in the cardiovascular system, focusing on pathophysiological roles of UII in the heart and blood vessels. (C) 2004 Elsevier Inc. All rights reserved,
Resumo:
Elevated extracellular concentrations of the neurotransmitter glutamate are neurotoxic and directly contribute to CNS damage as a result of ischemic pathologies. However, the main contributors to this uncontrolled rise in glutamate are still unconfirmed. It has been reported that the reversal of high-affinity glutamate transporters is a significant contributing factor. Conversely, it has also Peen observed that these transporters continue to take up glutamate, albeit at a reduced saturation concentration, under ischemic conditions. We sought to determine whether glutamate transporters continue to remove glutamate from the extracellular space under ischemic conditions by pharmacologically modulating the activity of high-affinity retinal glutamate transporters during simulated ischemia in vitro. Retinal glutamate transporter activity was significantly reduced under these ischemic conditions. The suppression of retinal glutamate transporter activity, with the protein kinase C inhibitor chelerythrine, significantly reduced ischemic glutamate uptake and enhanced retinal neurodegeneration. These findings imply a limited but protective role for retinal glutamate transporters under certain ischemic conditions, suggesting that pharmacological enhancement of high-affinity glutamate transporter activity may reduce tissue damage and loss of function resulting from toxic extracellular glutamate concentrations. (C) 2004 Wiley-Liss, Inc.
Resumo:
One way of controlling the activity of E-cadherin - a protein that is, simultaneously, a major cell-adhesion molecule, a powerful tumour suppressor, a determinant of cell polarity and a partner to the potent catenin signalling molecules - is to keep it on the move. During the past two decades, many insights into the fundamental role of E-cadherin in these processes have been garnered. Studies during the past five years have begun to reveal the importance of intracellular trafficking as a means of regulating the functions of E-cadherin. E-cadherin is trafficked to and from the cell surface by exocytic and multiple endocytic pathways. In this article, we survey the vesicle-trafficking machinery that is responsible for the sorting, transport, actin association and vesicle targeting of E-cadherin to regulate its movement and function during growth and development and, possibly, in cancer.
Resumo:
The glycine receptor chloride channel (GlyR) is a member of the nicotinic acetylcholine receptor family of ligand-gated ion channels. Functional receptors of this family comprise five subunits and are important targets for neuroactive drugs. The GlyR is best known for mediating inhibitory neurotransmission in the spinal cord and brain stem, although recent evidence suggests it may also have other physiological roles, including excitatory neurotransmission in embryonic neurons. To date, four alpha-subunits (alpha1 to alpha4) and one beta-subunit have been identified. The differential expression of subunits underlies a diversity in GlyR pharmacology. A developmental switch from alpha2 to alpha1beta is completed by around postnatal day 20 in the rat. The beta-subunit is responsible for anchoring GlyRs to the subsynaptic cytoskeleton via the cytoplasmic protein gephyrin. The last few years have seen a surge in interest in these receptors. Consequently, a wealth of information has recently emerged concerning Glyl? molecular structure and function. Most of the information has been obtained from homomeric alpha1 GlyRs, with the roles of the other subunits receiving relatively little attention. Heritable mutations to human GlyR genes give rise to a rare neurological disorder, hyperekplexia (or startle disease). Similar syndromes also occur in other species. A rapidly growing list of compounds has been shown to exert potent modulatory effects on this receptor. Since GlyRs are involved in motor reflex circuits of the spinal cord and provide inhibitory synapses onto pain sensory neurons, these agents may provide lead compounds for the development of muscle relaxant and peripheral analgesic drugs.
Resumo:
The role of protein kinase C (PKC) in glucose-stimulated insulin secretion (GSIS) is controversial. Using recombinant adenoviruses for overexpression of PKCalpha and PKCdelta, in both wild-type (WT) and kinase-dead (KD) forms, we here demonstrate that activation of these two PKCs is neither necessary nor sufficient for GSIS from batch-incubated, rat pancreatic islets. In contrast, responses to the pharmacologic activator 12-O-tetradecanoylphorbol-13-acetate (TPA) were reciprocally modulated by overexpression of the PKCalphaWT or PKCalphaKD but not the corresponding PKCdelta adenoviruses. The kinetics of the secretory response to glucose (monitored by perifusion) were not altered in either cultured islets overexpressing PKCalphaKD or freshly isolated islets stimulated in the presence of the conventional PKC (cPKC) inhibitor Go6976. However, the latter did inhibit the secretory response to TPA. Using phosphorylation state-specific antisera for consensus PKC phosphorylation sites, we also showed that (compared with TPA) glucose causes only a modest and transient functional activation of PKC (maximal at 2-5 min). However, glucose did promote a prolonged (15 min) phosphorylation of PKC substrates in the presence of the phosphatase inhibitor okadaic acid. Overall, the results demonstrate that glucose does stimulate PKCalphain pancreatic islets but that this makes little overall contribution to GSIS.
Resumo:
Postprandial hyperglycemia is implicated as a risk factor predisposing to vascular complications. This study was designed to assess recurrent short-term increases in glucose on markers of renal fibrogenesis. Human renal cortical fibroblasts were exposed to fluctuating short-term (2 h) increases to 15 mM D-glucose, three times a day over 72 h, on a background of 5 mM D-glucose. To determine whether observed changes were due to fluctuating osmolality, identical experiments were undertaken with cells exposed to L-glucose. Parallel experiments were performed in cells exposed to 5 mM D-glucose and constant exposure to either 15 or 7.5 mM D-glucose. Fluctuating D-glucose increased extracellular matrix, as measured by proline incorporation ( P < 0.05), collagen IV ( P < 0.005), and fibronectin production ( P < 0.001), in association with increased tissue inhibitor of matrix metalloproteinase (MMP) ( P < 0.05). Sustained exposure to 15 mM D-glucose increased fibronectin ( P < 0.001), in association with increased MMP-2 ( P = 0.01) and MMP-9 activity ( P < 0.05), suggestive of a protective effect on collagen matrix accumulation. Transforming growth factor-beta(1) (TGF-beta(1)) mRNA was increased after short-term (90 min) exposure to 15 mM glucose (P < 0.05) and after 24-h exposure to 7.5 mM ? ( P < 0.05). Normalization of TGF-beta(1) secretion occurred within 48 h of constant exposure to an elevated glucose. Fluctuating L-glucose also induced TGF-beta(1) mRNA and a profibrotic profile, however, to a lesser extent than observed with exposure to fluctuating D-glucose. The results suggest that exposure to fluctuating glucose concentrations increases renal interstitial fibrosis compared with stable elevations in D-glucose. The effects are, in part, due to the inherent osmotic changes.
Resumo:
The nuclear localization of a number of growth factors, cytokine ligands and their receptors has been reported in various cell lines and tissues. These include members of the fibroblast growth factor (FGF), epidermal growth factor and growth hormone families. Accordingly, a number of nuclear functions have begun to emerge for these protein families. The demonstration of functional interactions of these proteins with the nuclear import machinery has further supported their functions as nuclear signal transducers. Here, we review the membrane- trafficking machinery and pathways demonstrated to regulate this cell surface to nucleus-trafficking event and highlight the many remaining unanswered questions. We focus on the FGF family, which is providing many of the clues as to the process of this unusual phenomenon.
Resumo:
Overexpression of heterogeneous nuclear ribonucleoproteins (hnRNPs) A2 and B1 has been observed in a variety of tumour types, however, it is unknown whether this dysregulation is a consequence of, or a driving force for, unregulated cell proliferation. We have shown that the levels of hnRNPs A1, A2 and B1, but not A3, are modulated during the cell cycle of Colo16 squamous carcinoma cells and HaCaT immortalized keratinocytes, suggesting that A1, A2 and B1 are needed at particular cell cycle stages. However, the levels of hnRNP A1, A2 and B1 mRNAs were constant, indicating that regulation of protein levels was controlled at the level of translation. RNAi suppression of hnRNP At or A3 alone did not affect the proliferation of Colo16 cells but the proliferation rate was significantly reduced when both were suppressed simultaneously, or when either was suppressed together with hnRNP A2. Reducing hnRNP A2 expression in Colo16 and HaCaT cells by RNAi led to a non-apoptotic-related decrease in cell proliferation, reinforcing the view that this protein is required for cell proliferation. Suppression of hnRNP A2 in Colo16 cells was associated with increased p21 levels but p53 levels remained unchanged. In addition, expression of BRCA1 was downregulated, at both mRNA and protein levels. The observed effects of hnRNP A2 and its isoforms on cell proliferation and their correlation with BRCA1 and p21 expression suggest that these hnRNP proteins play a role in cell proliferation.
Resumo:
1 The calcineurin (CaN) enzyme-transcriptional pathway is critically involved in hypertrophy of heart muscle in some animal models. Currently there is no information concerning the regulation of CaN activation by endogenous agonists in human heart. 2 Human right ventricular trabeculae from explanted human ( 14 male/2 female) failing hearts were set up in a tissue bath and electrically paced at 1Hz and incubated with or without 100 nM endothelin-1 (ET-1), 10 mu M, angiotensin-II (Ang II) or 20 nM human urotensin-II (hUII) for 30 min. Tissues from four patients were incubated with 200 nM tacrolimus (FK506) for 30 min and then incubated in the presence or absence of ET-1 for a further 30 min. 3 ET-1 increased contractile force in all 13 patients (P < 0.001). Ang II and hUII increased contractile force in three out of eight and four out of 10 patients but overall nonsignificantly (P > 0.1). FK506 had no effect on contractile force (P = 0.12). 4 ET-1, Ang II and hUII increased calcineurin activity by 32, 71 and 15%, respectively, while FK506 reduced activity by 34%. ET-1 in the presence of FK506 did not restore calcineurin activity (P = 0.1). 5 There was no relationship between basal CaN activity and expression levels in the right ventricle. Increased levels of free phosphate were detected in ventricular homogenates that were incubated with PKC epsilon compared to samples incubated without PKCe. 6 Endogenous cardiostimulants which activate G alpha q-coupled receptors increase the activity of calcineurin in human heart following acute (30 min) exposure. PKC may contribute to this effect by increasing levels of phosphorylated calcineurin substrate.
Resumo:
One key role of the renal proximal tubule is the reabsorption of proteins from the glomerular filtrate by constitutive receptor-mediated endocytosis. In the opossum kidney (OK) renal proximal tubule cell line, inhibition of protein kinase C (PKC) reduces albumin uptake, although the isoforms involved and mechanisms by which this occurs have not been identified. We used pharmacological and molecular approaches to investigate the role of PKC-α in albumin endocytosis. We found that albumin uptake in OK cells was inhibited by the pan-PKC blocker bisindolylmaleimide-1 and the isoform-specific PKC blockers Go-6976 and 2',3,3',4,4'-hexahydroxy-1,1'-biphenyl-6,6'-dimethanol dimethyl ether, indicating a role for PKC-α. Overexpression of a kinase deficient PKC-α(K368R) but not wild-type PKC-α significantly reduced albumin endocytosis. Western blot analysis of fractionated cells showed an increased association of PKC-α-green fluorescent protein with the membrane fraction within 10-20 min of exposure to albumin. We used phalloidin to demonstrate that albumin induces the formation of clusters of actin at the apical surface of OK cells and that these clusters correspond to the location of albumin uptake. These clusters were not present in cells grown in the absence of albumin. In cells treated either with PKC inhibitors or overexpressing kinase-deficient PKC-α(K368R) this actin cluster formation was significantly reduced. This study identifies a role for PKC-α in constitutive albumin uptake in OK cells by mediating assembly of actin microfilaments at the apical membrane.
Resumo:
We have investigated the targeting of caveolin to lipid bodies in adipocytes that express high levels of caveolins and contain well-developed lipid droplets. We observed that the lipid droplets isolated from adipocytes of caveolin-1 knock out mice contained dramatically reduced levels of cholesterol, indicating that caveolin is required for maintaining the cholesterol content of this organelle. Analysis of caveolin distribution by cell fractionation and fluorescent light microscopy in 3T3-L1 adipocytes indicated that addition of cholesterol rapidly stimulated translocation of caveolin to lipid droplets. The cholesterol-induced trafficking of caveolins to lipid droplets was shown to be dynamin- and protein kinase C (PKC)-dependent and modulated by src tyrosine kinase activation, suggesting a role for caveolar endocytosis in this novel trafficking pathway. Consistent with this, caveolae budding was stimulated by cholesterol addition. The present data identify lipid droplets as potential target organelles for caveolar endocytosis and demonstrate a role for caveolin-1 in the maintenance of free cholesterol levels in adipocyte lipid droplets.
Resumo:
Cadmium (Cd) is a metal toxin of continuing worldwide concern. Daily intake of Cd, albeit in small quantities, is associated with a number of adverse health effects which are attributable to distinct pathological changes in a variety of tissues and organs. In the present review, we focus on its renal tubular effects in people who have been exposed environmentally to Cd at levels below the provisional tolerable intake level set for the toxin. We highlight the data linking such low-level Cd intake with tubular injury, altered abundance of cytochromes P450 (CYPs) in the kidney and an expression of a hypertensive phenotype. We provide updated knowledge on renal and vascular effects of the eicosanoids 20-hydroxyeicosatetraenoic acid (20-HETE) and eicosatrienoic acids (EETs), which are biologically active metabolites from arachidonate metabolism mediated by certain CYPs in the kidney. We note the ability of Cd to elicit oxidative stress and to alter metal homeostasis notably of zinc which may lead to augmentation of the defense mechanisms involving induction of the antioxidant enzyme heme oxygenase-1 (HO-1) and the metal binding protein metallothionein (MT) in the kidney. We hypothesize that renal Cd accumulation triggers the host responses mediated by HO-I and MT in an attempt to protect the kidney against injurious oxidative stress and to resist a rise in blood pressure levels. This hypothesis predicts that individuals with less active HO-1 (caused by the HO-1 genetic polymorphisms) are more likely to have renal injury and express a hypertensive phenotype following chronic ingestion of low-level Cd, compared with those having more active HO-1. Future analytical and molecular epidemiologic research should pave the way to the utility of induction of heme oxygenases together with dietary antioxidants in reducing the risk of kidney injury and hypertension in susceptible people.
Resumo:
The effects of substance P (SP) on nicotinic acetylcholine (ACh)-evoked currents were investigated in parasympathetic neurons dissociated from neonatal rat intracardiac ganglia using standard whole cell, perforated patch, and outside-out recording configurations of the patch-clamp technique. Focal application of SP onto the soma reversibly decreased the peak amplitude of the ACh-evoked current with half-maximal inhibition occurring at 45 mu M and complete block at 300 mu M SP. Whole cell current-voltage (I-V) relationships obtained in the absence and presence of SP indicate that the block of ACh-evoked currents by SP is voltage independent. The rate of decay of ACh-evoked currents was increased sixfold in the presence of SP (100 mu M), suggesting that SP may increase the rate of receptor desensitization. SP-induced inhibition of ACh-evoked currents was observed following cell dialysis and in the presence of either 1 mM 8-Br-cAMP, a membrane-permeant cAMP analogue, 5 mu M H-7, a protein kinase C inhibitor, or 2 mM intracellular AMP-PNP, a nonhydrolyzable ATP analogue. These data suggest that a diffusible cytosolic second messenger is unlikely to mediate SP inhibition of neuronal nicotinic ACh receptor (nAChR) channels. Activation of nAChR channels in outside-out membrane patches by either ACh (3 mu M) or cytisine (3 mu M) indicates the presence of at least three distinct conductances (20, 35, and 47 pS) in rat intracardiac neurons. In the presence of 3 mu M SP, the large conductance nAChR channels are preferentially inhibited. The open probabilities of the large conductance classes activated by either ACh or cytisine were reversibly decreased by 10- to 30-fold in the presence of SP. The single-channel conductances were unchanged, and mean apparent channel open times for the large conductance nAChR channels only were slightly decreased by SP. Given that individual parasympathetic neurons of rat intracardiac ganglia express a heterogeneous population of nAChR subunits represented by the different conductance levels, SP appears to preferentially inhibit those combinations of nAChR subunits that form the large conductance nAChR channels. Since ACh is the principal neurotransmitter of extrinsic (vagal) innervation of the mammalian heart, SP may play an important role in modulating autonomic control of the heart.
Resumo:
The mitogen-activated protein ( MAP) kinases contribute to altered cell growth and function in a variety of disease states. However, their role in the endothelial complications of diabetes mellitus remains unclear. Human endothelial cells were exposed for 72 h to 5 mM ( control) or 25 mM ( high) glucose or 5 mM glucose plus 20 mM mannitol ( osmotic control). The roles of p38 and p42/44 MAP kinases in the high glucose-induced growth effects were determined by assessment of phosphorylated MAP kinases and their downstream activators by Western blot and by pharmacological inhibition of these MAP kinases. Results were expressed as a percentage ( means +/- SE) of control. High glucose increased the activity of total and phosphorylated p38 MAP kinase ( P < 0.001) and p42/44 MAP kinase ( P < 0.001). Coexposure of p38 MAP kinase blocker with high glucose reversed the antiproliferative but not the hypertrophic effects associated with high-glucose conditions. Transforming growth factor (TGF)-beta1 increased the levels of phosphorylated p38 MAP kinase, and p38 MAP kinase blockade reversed the antiproliferative effects of this cytokine. The high glucose-induced increase in phosphorylated p38 MAP kinase was reversed in the presence of TGF-beta1 neutralizing antibody. Although hyperosmolarity also induced antiproliferation (P < 0.0001) and cell hypertrophy (P < 0.05), there was no change in p38 activity, and therefore inhibition of p38 MAP kinase had no influence on these growth responses. Blockade of p42/44 MAP kinase had no effect on the changes in endothelial cell growth induced by either high glucose or hyperosmolarity. High glucose increased p42/44 and p38 MAP kinase activity in human endothelial cells, but only p38 MAP kinase mediated the antiproliferative growth response through the effects of autocrine TGF-beta1. High glucose-induced endothelial cell hypertrophy was independent of activation of the MAP kinases studied. In addition, these effects were independent of any increase in osmolarity associated with high-glucose exposure.