108 resultados para Plant products industry
Resumo:
Ganoderma boninense (the causal agent of basal stem rot of oil palm in Papua New Guinea) has a tetrapolar mating system with multiple alleles. Investigations into the population structure of G. boninense, using interfertility between isolates as a marker, revealed that the population on oil palm was comprised predominantly of genetically distinct individuals, although a number of isolates were found to share single mating alleles. No direct hereditary relationship was found between isolates on neighbouring or spatially separated diseased palms, indicating that outcrossing had probably occurred over several generations in the founder population prior to colonization of oil palm. In this study, a total of 81 A and 83 B mating type alleles (factors) were detected with 18 allelic repeats at the A locus and 17 at the B locus. Alleles appeared to be randomly dispersed throughout the population in each study block, although there was a significantly (P
Resumo:
Essential oils of rice flower, Ozothamnus diosmifolius, were analyzed by capillary gas chromatograplay-mass spectrometry. Flower oil contained beta-pinene (28.4%) and 1,8-cineole (28.2%), while the leaf oil contained a-pinene (26.0%), beta-pinene (11.6%) and 1,8-cineole (22.2%). Both oils had small amounts of spathulenol (4.1% and 5.2%, respectively).
Resumo:
A review is given on the fundamental studies of gas-carbon reactions using electronic structure methods in the last several decades. The three types of electronic structure methods including semi-empirical, ab initio and density functional theory, methods are briefly introduced first, followed by the studies on carbon reactions with hydrogen and oxygen-containing gases (non-catalysed and catalysed). The problems yet to solve and possible promising directions are discussed. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Zr-Laponite pillared clays were prepared and used as supports of nickel catalysts for the methane reforming reaction with carbon dioxide to synthesis gas. The structural and textural characteristics of supports and catalysts were systematically examined by N-2 adsorption/desorption and X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron spectroscopy (TEM) techniques. The catalytic performance and carbon deposition were investigated. It is found that Zr-Laponite pillared clays are promising catalyst supports for carbon dioxide reforming of methane. The pore structure and surface properties of such supports greatly affect the catalytic behaviors of catalysts derived. Carbon deposition on catalysts was also affected by the property and structure of supports. The sintering of nickel metal and zirconia was another factor responsible for catalyst deactivation. This new-type nickel supported catalyst Ni/Zr-Laponite(8), with well-developed porosity, gave a higher initial conversion and a relatively long-term stability, and is therefore a promising catalyst for potential application to carbon dioxide reforming of methane to synthesis gas. (C) 2002 Elsevier Science B.V All rights reserved.
Resumo:
The first success in the preparation of rare earth hydroxycarbonate thin films has been achieved. Cerium hydroxycarbonate films were prepared by a hydrothermal deposition method, the sample of a single orthorhombic phase was deposited at a lower temperature while those of orthorhombic and hexagonal phases were obtained at higher temperatures. The crystals in the films could be ellipsoidal, prismatic, or rhombic, depending on the deposition conditions applied. The thin films could be candidates for developing novel optical materials and for advanced ceramics processing. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Since the start of last century, methanol synthesis has attracted great interests because of its importance in chemical industries and its potential as an environmentally friendly energy carrier. The catalyst for the methanol synthesis has been a key area of research in order to optimize the reaction process. In the literature, the nature of the active site and the effects of the promoter and support have been extensively investigated. In this updated review, the recent progresses in the catalyst innovation, optimization of the reaction conditions, reaction mechanism, and catalyst performance in methanol synthesis are comprehensively discussed. Key issues of catalyst improvement are highlighted, and areas of priority in R&D are identified in the conclusions.
Performance of hydrophobic and hydrophilic silica membrane reactors for the water gas shift reaction
Resumo:
In this study, a novel molecular sieve silica (MSS) membrane packed bed reactor (PBR) using a Cu/ZnO/Al2O3 catalyst was applied to the low-temperature water gas shift reaction (WGS). Best permeation results were H-2 permeances of 1.5 x 10(-6) mol(.)s(-1) m(-2) Pa-1, H-2/CO2 selectivities of 8 and H-2/N-2 selectivities of 18. It was shown that an operation with a sweep gas flow of 80 cm 3 min(-1), a feed flow rate of 50 cm(3) min(-1) and a H2O/CO molar ratio of one at 280 degreesC reached a 99% CO conversion. This is well above the thermodynamic equilibrium and achievable PBR conversion. Hydrophilic membranes underwent pore widening during the reaction while hydrophobic membranes indicated no such behaviour and also showed increased H-2 permeation with temperature, a characteristic of activated transport. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
A great deal of effort has been made at searching for alternative catalysts to replace conventional Lewis acid catalyst aluminum trichloride (AlCl3). In this paper, immobilization of AlCl3 on mesoporous MCM-41 silica with and without modification was carried out. The catalytic properties of the immobilized catalyst systems for liquid-phase isopropylation of naphthalene were studied and compared with those of H/MCM-41 and H/mordenite. The structures of the surface-immobilized aluminum chloride catalysts were studied and identified by using solid-state magic angle spinning nuclear magnetic resonance (MAS NMR), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), nitrogen adsorption, and X-ray diffraction (XRD) techniques. The catalytic activity of the immobilized catalysts was found to be similar to that of acidic mordenite zeolite. A significant enhancement in the selectivity of 2,6-diisopropylnaphthalene (2,6-DIPN) was observed over the immobilized aluminum chloride catalysts. Immobilization of aluminum chloride on mesoporous silica coupled with surface silylation is a promising way of developing alternative catalyst system for liquid-phase Friedel-Crafts alkylation reactions. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The chemical structure, synthesis, morphology, and properties of polyurethane elastomers are briefly discussed. The current understanding of the effect of chemical structure and the associated morphology on the stability of polyurethanes in the biological environments is reviewed. The degradation of conventional polyurethanes appears as surface or deep cracking, stiffening, and deterioration of mechanical properties, such as flex-fatigue resistance. Polyester and poly( tetramethylene oxide) based polyurethanes degrade by hydrolytic and oxidative degradation of ester and ether functional groups, respectively. The recent approaches to develop polyurethanes with improved long-term biostability are based on developing novel polyether, hydrocarbon, polycarbonate, and siloxane macrodiols to replace degradation-prone polyester and polyether macrodiols in polyurethane formulations. The new approaches are discussed with respect to synthesis, properties and biostability based on reported in vivo studies. Among the newly developed materials, siloxane-based polyurethanes have exhibited excellent biostability and are expected to find many applications in biomedical implants.
Resumo:
Two species of Ganoderma belonging to different subgenera which cause disease on oil palms in PNG are identified by basidiome morphology and the morphology of their basidiospores. The names G. boninense and G. tornatum have been applied. Significant pleiomorphy was observed in basidiome characters amongst the specimens examined. This variation in most instances did not correlate well with host or host status. Sporemorphology appeared uniform within a species and spore indices varied only slightly. G. tornatum was found to have a broad host range whereas G. boninense appears to be restricted to palms in Papua New Guinea.
Resumo:
Global concerns over the effects of current carbon dioxide (CO2) emissions have lead to extensive research on the use of hydrogen as a potential energy carrier for a lower emissions society. Hydrogen can be produced from both fossil and renewable energy sources. The hydrogen economy, in which hydrogen will be a carrier of energy from renewable sources, is a long-term development and any increasing demand for hydrogen will probably be covered initially from fossil sources. Technologies for hydrogen generation from renewable energies are being explored, whereas technologies for hydrogen production from fossil fuels have to a certain extent reached maturity. This paper addresses the major hydrogen generation processes and utilisation technology (fuel cells) currently available for the move from a fossil fuelsbased economy to a hydrogen economy. In particular, it illustrates the applicability of different hydrogen sources using Australia as an example.
Resumo:
Mesoporous Ni(OH)(2) is synthesized using sodium dodecyl sulfate as a template and urea as a hydrolysis-controlling agent. Mesoporous NiO with a centralized pore-size distribution is obtained by calcining Ni(OH)(2) at different temperatures. The BET specific surface area reaches 477.7 m(2) g(-1) for NiO calcined at 250 degreesC. Structure characterizations indicate a good mesoporous structure for the nickel oxide samples. Cyclic voltammetry shows the NiO to have good capacitive behaviour due to its unique mesoporous structure when using a large amount of NiO to fabricate the electrode. Compared with NiO prepared by dip-coating and cathodic precipitation methods, mesoporous NiO with a controlled pore structure can be used in much larger amounts to fabricate electrodes and still maintain a high specific capacitance and good capacitive behaviour. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Lanthanum hydroxycarbonate crystals with controlled phases and varied morphologies were prepared on the surface of a non-crystalline substrate, glass. The phases and morphologies of the crystals were controlled conveniently by varying the reaction temperature and the quantity of starting materials. Orthorhombic crystals were obtained at 160 degreesC, distributed individually on the substrate and had a flaky rhombic shape. Hexagonal crystals were obtained at 180 degreesC. The crystals had a rhomboidal shape, were uniform and continuous enough to form a solid film on the substrate. The substrates were corroded under the hydrothermal conditions and offered a coarse surface for the crystal growth. The hexagonal lanthanum hydroxycarbonate was discovered to show significant second harmonic generation, which would be of interest for developing novel optical materials. (C) 2004 Elsevier Inc. All rights reserved.