38 resultados para Performance Rating System
Resumo:
The BR algorithm is a novel and efficient method to find all eigenvalues of upper Hessenberg matrices and has never been applied to eigenanalysis for power system small signal stability. This paper analyzes differences between the BR and the QR algorithms with performance comparison in terms of CPU time based on stopping criteria and storage requirement. The BR algorithm utilizes accelerating strategies to improve its performance when computing eigenvalues of narrowly banded, nearly tridiagonal upper Hessenberg matrices. These strategies significantly reduce the computation time at a reasonable level of precision. Compared with the QR algorithm, the BR algorithm requires fewer iteration steps and less storage space without depriving of appropriate precision in solving eigenvalue problems of large-scale power systems. Numerical examples demonstrate the efficiency of the BR algorithm in pursuing eigenanalysis tasks of 39-, 68-, 115-, 300-, and 600-bus systems. Experiment results suggest that the BR algorithm is a more efficient algorithm for large-scale power system small signal stability eigenanalysis.
Resumo:
Training-needs analysis is critical for defining and procuring effective training systems. However, traditional approaches to training-needs analysis are not suitable for capturing the demands of highly automated and computerized work domains. In this article, we propose that work domain analysis can identify the functional structure of a work domain that must be captured in a training system, so that workers can be trained to deal with unpredictable contingencies that cannot be handled by computer systems. To illustrate this argument, we outline a work domain analysis of a fighter aircraft that defines its functional structure in terms of its training objectives, measures of performance, basic training functions, physical functionality, and physical context. The functional structure or training needs identified by work domain analysis can then be used as a basis for developing functional specifications for training systems, specifically its design objectives, data collection capabilities, scenario generation capabilities, physical functionality, and physical attributes. Finally, work domain analysis also provides a useful framework for evaluating whether a tendered solution fulfills the training needs of a work domain.
Resumo:
Previous analyses of thermal acclimation of locomotor performance in amphibians have only examined the adult life history stage and indicate that the locomotor system is unable to undergo acclimatory changes to temperature. In this study, we examined the ability of tadpoles of the striped marsh frog (Limnodynastes peronii) to acclimate their locomotor system by exposing them to either 10 degrees C or 24 degrees C for 6 weeks and testing their burst swimming performance at 10, 24, and 34 degrees C. At the test temperature of 10 degrees C, maximum velocity (U-max) of the 10 degrees C-acclimated tadpoles was 47% greater and maximum acceleration (A(max)) 53% greater than the 24 degrees C-acclimated animals. At 24 degrees C, U-max was 16% greater in the 10 degrees C-acclimation group, while there was no significant difference in A(max) or the time taken to reach U-max (T-U-max). At 34 degrees C, there was no difference between the acclimation groups in either U-max or A(max), however T-U-max was 36% faster in the 24 degrees C-acclimation group. This is the first study to report an amphibian (larva or adult) possessing the capacity to compensate for cool temperatures by thermal acclimation of locomotor performance. To determine whether acclimation period affected the magnitude of the acclimatory response, we also acclimated tadpoles of L. peronii to 10 degrees C for 8 months and compared their swimming performance with tadpoles acclimated to 10 degrees C for 6 weeks. At the test temperatures of 24 degrees C and 34 degrees C, U-max and A(max) were significantly slower in the tadpoles acclimated to 10 degrees C for 8 months. At 10 degrees C, T-U-max was 40% faster in the 8-month group, while there were no differences in either U-max or A(max). Although locomotor performance was enhanced at 10 degrees C by a longer acclimation period, this was at the expense of performance at higher temperatures.
Resumo:
Despite several studies on adult amphibians, only larvae of the striped marsh frog (Limnodynastes peronii) have been reported to possess the ability to compensate for the effects of cool temperature on locomotor performance by thermal acclimation. In this study, we investigated whether this thermal acclimatory ability is shared by adult L. peronii. We exposed adult L. peronii to either 18 or 30 degrees C for 8 weeks and tested their swimming and jumping performance at six temperatures between 8 and 35 degrees C. Acute changes in temperature affected both maximum swimming and jumping performance, however there was no difference between the two treatment groups in locomotor performance between 8 and 30 degrees C. Maximum swimming velocity of both groups increased from 0.62 +/- 0.02 at 8 degrees C to 1.02 +/- 0.03 m s(-1) at 30 degrees C, while maximum jump distance increased from similar to 20 to > 60 cm over the same temperature range. Although adult L. peronii acclimated to 18 degrees C failed to produce a locomotor response at 35 degrees C, this most likely reflected a change in thermal tolerance limits with acclimation rather than modifications in the locomotor system. As all adult amphibians studied to date are incapable of thermally acclimating locomotor performance, including adults of L. peronii, this acclimatory capacity appears to be absent from the adult stage of development. (C) 2000 Elsevier Science Inc. All rights reserved.
Resumo:
To facilitate the investigation of free mycophenolic acid concentrations we developed a high-performance liquid chromatography tandem mass spectrometry method using indomethacin as an internal standard. Free drug was isolated from plasma samples (500 mul) using ultrafiltration, The analytes were extracted from the ultrafiltrate (200 mul) using C-18 solid-phase extraction. Detection was by selected reactant monitoring of mycophenolic acid (m/z 318.9-->190.9) and the internal standard (m/z 356.0-->297.1) with an atmospheric pressure chemical ionisation interface. The total chromatographic analysis time was 12 min. The method was found to be linear over the range investigated, 2.5-200 mug/l (r>0.990, n=6). The relative recovery of the method for the control samples studied (7.5, 40.0 and 150 mug/l) ranged from 95 to 104%. The imprecision of the method, expressed in terms of intra- and inter-day coefficients of variation, was
Resumo:
The purpose of these experiments was to examine the effects of dietary antioxidant supplementation with vitamin E (VE) and alpha -lipoic acid (alpha -LA) on biochemical and physiological responses to in vivo myocardial ischemia-reperfusion (I-R) in aged rats. Male Fischer-334 rats (18 mo old) were assigned to either 1) a control diet (CON) or 2) a VE and alpha -LA supplemented diet (ANTIOX). After a 14-wk feeding period, animals in each group underwent an in vivo I-R protocol (25 min of myocardial ischemia and 15 min of reperfusion). During reperfusion, peak arterial pressure was significantly higher (P < 0.05) in ANTIOX animals compared with CON diet animals. I-R resulted in a significant increase (P < 0.05) in myocardial lipid peroxidation in CON diet animals but not in ANTIOX animals. Compared with ANTIOX animals, heart homogenates from CON animals experienced significantly less (P < 0.05) oxidative damage when exposed to five different in vitro radical producing systems. These data indicate that dietary supplementation with VE and -LA protects the aged rat heart from I-R-induced lipid peroxidation by scavenging numerous reactive oxygen species. Importantly, this protection is associated with improved cardiac performance during reperfusion.
Resumo:
The movement of chemicals through the soil to the groundwater or discharged to surface waters represents a degradation of these resources. In many cases, serious human and stock health implications are associated with this form of pollution. The chemicals of interest include nutrients, pesticides, salts, and industrial wastes. Recent studies have shown that current models and methods do not adequately describe the leaching of nutrients through soil, often underestimating the risk of groundwater contamination by surface-applied chemicals, and overestimating the concentration of resident solutes. This inaccuracy results primarily from ignoring soil structure and nonequilibrium between soil constituents, water, and solutes. A multiple sample percolation system (MSPS), consisting of 25 individual collection wells, was constructed to study the effects of localized soil heterogeneities on the transport of nutrients (NO3-, Cl-, PO43-) in the vadose zone of an agricultural soil predominantly dominated by clay. Very significant variations in drainage patterns across a small spatial scale were observed tone-way ANOVA, p < 0.001) indicating considerable heterogeneity in water flow patterns and nutrient leaching. Using data collected from the multiple sample percolation experiments, this paper compares the performance of two mathematical models for predicting solute transport, the advective-dispersion model with a reaction term (ADR), and a two-region preferential flow model (TRM) suitable for modelling nonequilibrium transport. These results have implications for modelling solute transport and predicting nutrient loading on a larger scale. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The pathophysiology of chronic fatigue syndrome (CFS) remains unclear; however, both biological and psychological factors have been implicated in establishing or maintaining this condition. People with CFS report significant and disabling cognitive difficulties such as impaired concentration that in some cases are exacerbated by exposure to chemical triggers. The aim of this study was to determine if neuropsychological deficits in CFS are triggered by exposure to chemicals, or perceptions about the properties of these substances. Participants were 36 people with a primary diagnosis of CFS, defined according to Centers for Disease Control (CDC) criteria. A randomized, double-blind, placebo-controlled, crossover design was used, with objective assessment of neuropsychological function and participant rating of substance type, before and after exposure to placebo or chemical trigger. Results showed decrements in neuropsychological tests scores on three out of four outcome measures when participants rated the substance they had been exposed to as chemical. No change in performance was found based on actual substance type. These results suggest that cognitive attributions about exposure substances in people with CFS may be associated with worse performance on neuropsychological tasks. In addition, these findings suggest that psychological interventions aimed at modifying substance-related cognitions may reduce some symptoms of CFS.
Resumo:
PREDBALB/c is a computational system that predicts peptides binding to the major histocompatibility complex-2 (H2(d)) of the BALB/c mouse, an important laboratory model organism. The predictions include the complete set of H2(d) class I ( H2-K-d, H2-L-d and H2-D-d) and class II (I-E-d and I-A(d)) molecules. The prediction system utilizes quantitative matrices, which were rigorously validated using experimentally determined binders and non-binders and also by in vivo studies using viral proteins. The prediction performance of PREDBALB/c is of very high accuracy. To our knowledge, this is the first online server for the prediction of peptides binding to a complete set of major histocompatibility complex molecules in a model organism (H2(d) haplotype). PREDBALB/c is available at http://antigen.i2r.a-star.edu.sg/predBalbc/.
Resumo:
The anisotropic norm of a linear discrete-time-invariant system measures system output sensitivity to stationary Gaussian input disturbances of bounded mean anisotropy. Mean anisotropy characterizes the degree of predictability (or colouredness) and spatial non-roundness of the noise. The anisotropic norm falls between the H-2 and H-infinity norms and accommodates their loss of performance when the probability structure of input disturbances is not exactly known. This paper develops a method for numerical computation of the anisotropic norm which involves linked Riccati and Lyapunov equations and an associated special type equation.