20 resultados para Penning traps, quantum electrodynamic, electron
Resumo:
Highly localized positive-energy states of the free Dirac electron are constructed and shown to evolve in a simple way under the action of Dirac's equation. When the initial uncertainty in position is small on the scale of the Compton wavelength, there is an associated uncertainty in the mean energy that is large compared with the rest mass of the electron. However, this does not lead to any breakdown of the one-particle description, associated with the possibility of pair-production, but rather leads to a rapid expansion of the probability density outwards from the point of localization, at speeds close to the speed of light.
Resumo:
Circuit QED is a promising solid-state quantum computing architecture. It also has excellent potential as a platform for quantum control-especially quantum feedback control-experiments. However, the current scheme for measurement in circuit QED is low efficiency and has low signal-to-noise ratio for single-shot measurements. The low quality of this measurement makes the implementation of feedback difficult, and here we propose two schemes for measurement in circuit QED architectures that can significantly improve signal-to-noise ratio and potentially achieve quantum-limited measurement. Such measurements would enable the implementation of quantum feedback protocols and we illustrate this with a simple entanglement-stabilization scheme.
Resumo:
We study the electrical transport of a harmonically bound, single-molecule C-60 shuttle operating in the Coulomb blockade regime, i.e. single electron shuttling. In particular, we examine the dependance of the tunnel current on an ultra-small stationary force exerted on the shuttle. As an example, we consider the force exerted on an endohedral N@C-60 by the magnetic field gradient generated by a nearby nanomagnet. We derive a Hamiltonian for the full shuttle system which includes the metallic contacts, the spatially dependent tunnel couplings to the shuttle, the electronic and motional degrees of freedom of the shuttle itself and a coupling of the shuttle's motion to a phonon bath. We analyse the resulting quantum master equation and find that, due to the exponential dependence of the tunnel probability on the shuttle-contact separation, the current is highly sensitive to very small forces. In particular, we predict that the spin state of the endohedral electrons of N@C-60 in a large magnetic gradient field can be distinguished from the resulting current signals within a few tens of nanoseconds. This effect could prove useful for the detection of the endohedral spin-state of individual paramagnetic molecules such as N@C-60 and P@C-60, or the detection of very small static forces acting on a C-60 shuttle.
Resumo:
Microtome sections of proton exchange membrane cells produce a wide range of information ranging from macroscopic distribution of components through specimens in which the detailed distribution of catalyst particles can be observed. Using modern data management practices it is possible to combine information at different scales and correlate processing and performance data. Analytical electron microscopy reveals the compositional variations across used cells at the electrolyte/electrode interface. In particular analytical techniques indicate that sulphur concentrations are likely to diminish at the interface Nafion/anode interface. © 2006 Elsevier B.V. All rights reserved.