81 resultados para PARASITE PLASMODIUM-FALCIPARUM
Resumo:
A new algorithm, PfAGSS, for predicting 3' splice sites in Plasmodium falciparum genomic sequences is described. Application of this program to the published P. falciparum chromosome 2 and 3 data suggests that existing programs result in a high error rate in assigning 3' intron boundaries. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Many of the asexual stage Plasmodium falciparum proteins that are the targets of host protective responses are markedly polymorphic. The full repertoire of diversity is not defined for any antigen. Most studies have focused on the genes encoding merozoite surface proteins 1 and 2 (MSP1, MSP2). We explored the extent of diversity of some of the less studied merozoite surface antigens and analyzed the degree of complexity of malaria field isolates by deriving nucleotide sequences of several antigens. We have determined the genotype of apical membrane antigen 1 (AMA1) in a group of 30 field samples, collected over 29 months, from individuals living in an area of intense malaria transmission in Irian Jaya, identifying 14 different alleles. AMA1 genotyping was combined with previously determined MSP2 typing. AMA1 had the greatest power in distinguishing between isolates but methodological problems, especially when mixed infections are present, suggest it is not an ideal typing target. MSP1, MSP3, and glutamate-rich protein genotypes were also determined from a smaller group of samples, and all results were combined to derive an extended antigenic haplotype. Within this subset of 10 patients, nine different genotypes could be discerned; however, five patients were all infected with the same strain. This strain was present in individuals from two separate villages and was still present 12 months later. This strain was predominant at the first time point but had disappeared at the fourth time point. This significant change in malaria genotypes could be due to strain-specific immunity developing in this population.
Resumo:
A recent malaria epidemic in the Menoreh Hills of Central Java has increased concern about the re-emergence of endemic malaria on Java, which threatens the island's 120 million residents. A 28-day, in-vivo test of the efficacy of treatment of malaria with antimalarial drugs was conducted among 16 7 villagers in the Menoreh Hills. The treatments investigated, chloroquine (CQ) and sulfadoxine pyrimethamine (SP), constitute, respectively, the first- and second-line treatments for uncomplicated malaria in Indonesia. The prevalence of malaria among 1389 residents screened prior to enrollment was 33%. Treatment outcomes were assessed by microscopical diagnoses, PCR-based confirmation of the diagnoses, measurement of the whole-blood concentrations of CQ and desethylchloroquine (DCQ), and identification of the Plasmodium falciparum genotypes. The 28-day cumulative incidences of therapeutic failure for CQ and SP were, respectively, 47% (N = 36) and 22% (N = 50) in the treatment of P. falciparum, and 18% (N = 77) and 67% (N = 6) in the treatment of P. vivax. Chloroquine was thus an ineffective therapy for P. falciparum malaria, and the presence of CQ-resistant P. vivax and SP-resistant P. falciparum will further compromise efforts to control resurgent malaria on Java.
Resumo:
Current methods used to genotype point mutations in Plasmodium falciparum genes involved in resistance to antifolate drugs include restriction digestion of PCR products, allele-specific amplification or sequencing. Here we demonstrate that known point mutations in dihydrofolate reductase and dihydropteroate synthase can be scored quickly and accurately by single-nucleotide primer extension and detection of florescent products on a capillary sequencer. We use this method to genotype parasites in natural infections from the Thai-Myanmar border. This approach could greatly simplify large-scale screening of resistance mutations of the type required for evaluating and updating antimalarial drug treatment policies. The method can be easily adapted to other P. falciparum genes and will greatly simplify scoring of point mutations in this and other parasitic organisms. © 2002 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Although most of the Papua New Guinea highlands are too high for stable malaria transmission, local epidemics are a regular feature of the region. Few detailed descriptions of such epidemics are available, however. We describe the investigation of a malaria epidemic in the Obura Valley, Eastern Highlands Province, Papua New Guinea. Of the 244 samples examined by microscopy, 6.6% were positive for Plasmodium falciparum only, 9.4% were positive for Plasmodium vivax only, and 1.2% were mixed infections. MSP2 and MSP3alpha genotyping and AMA1 sequencing were used to determine the genetic variation present in a sample of P. falciparum and P. vivax infections. The P. vivax infections were found to be genetically highly diverse. In contrast, all P. falciparum samples were of a single genotype. This striking difference in genetic diversity suggests endemic, low-level local transmission for P. vivax but an outside introduction of P. falciparum as the most likely source of the epidemic.
Resumo:
Rising costs of antimalarial agents are increasing the demand for accurate diagnosis of malaria. Rapid diagnostic tests (RDTs) offer great potential to improve the diagnosis of malaria, particularly in remote areas. Many RDTs are based on the detection of Plasmodium falciparum histidine-rich protein (PfHRP) 2, but reports from field tests have questioned their sensitivity and reliability. We hypothesize that the variability in the results of PfHRP2-based RDTs is related to the variability in the target antigen. We tested this hypothesis by examining the genetic diversity of PfHRP2, which includes numerous amino acid repeats, in 75 P. falciparum lines and isolates originating from 19 countries and testing a subset of parasites by use of 2 PfHRP2-based RDTs. We observed extensive diversity in PfHRP2 sequences, both within and between countries. Logistic regression analysis indicated that 2 types of repeats were predictive of RDT detection sensitivity (87.5% accuracy), with predictions suggesting that only 84% of P. falciparum parasites in the Asia-Pacific region are likely to be detected at densities
Resumo:
The multicopy var gene family encoding the variant surface antigen Plasmodium falciparum erythrocyte membrane protein 1 is highly diverse, with little overlap between different P. falciparum isolates. We report 5 var genes (varS1-varS5) that are shared at relatively high frequency among 63 genetically diverse P. falciparum isolates collected from 5 islands in the West Pacific region. The varS1, varS2, and varS3 genes were localized to the internal region on chromosome 4, similar to 200 kb from pfdhfr-ts, whereas varS4 and varS5 were mapped to an internal region of chromosome 7, within 100 kb of pfcrt. The presence of varS2 and varS3 were significantly correlated with the pyrimethamine-resistant pfdhfr genotype, whereas varS4 was strongly correlated with the chloroquine-resistant pfcrt genotype. Thus, the conservation of these var genes is the result of their physical linkage with drug-resistant genes in combination with the antimalarial drug pressure in the region.
Resumo:
The malarial parasite Plasmodium falciparum depends on the purine salvage enzyme hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) to convert purine bases from the host to nucleotides needed for DNA and RNA synthesis. An approach to developing antimalarial drugs is to use HGXPRT to convert introduced purine base analogs to nucleotides that are toxic to the parasite. This strategy requires that these compounds be good substrates for the parasite enzyme but poor substrates for the human counterpart, HGPRT. Bases with a chlorine atom in the 6-position or a nitrogen in the 8-position exhibited strong discrimination between P. falciparum HGXPRT and human HGPRT. The k(cat)/K-m values for the Plasmodium enzyme using 6-chloroguanine and 8-azaguanine as substrates were 50-80-fold and 336-fold higher than for the human enzyme, respectively. These and other bases were effective in inhibiting the growth of the parasite in vitro, giving IC50 values as low as 1 mu M.
Resumo:
Malaria aminopeptidases are important in the generation and regulation of free amino acids that are used in protein anabolism and for maintaining osmotic stability within the infected erythrocyte. The intraerythrocytic development of malaria parasites is blocked when the activity of aminopeptidases is specifically inhibited by reagents such as bestatin. One of the major aminopeptidases of malaria parasites is a leucyl aminopeptidase of the M17 family. We reasoned that, when this enzyme was the target of bestatin inhibition, its overexpression in malaria cells would lead to a reduced sensitivity to the inhibitor. To address this supposition, transgenic Plasmodium falciparum parasites overexpressing the leucyl aminopeptidase were generated by transfection with a plasmid that housed the full-length gene. Transgenic parasites expressed a 65-kDa protein close to the predicted molecule size of 67.831 kDa for the introduced leucyl aminopeptidase, and immunofluorescence studies localized the protein to the cytosol, the location of the native enzyme. The product of the transgene was shown to be functionally active with cytosolic extracts of transgenic parasites exhibiting twice the leucyl aminopeptidase activity compared with wildtype parasites. In vitro inhibitor sensitivity assays demonstrated that the transgenic parasites were more resistant to bestatin (EC50 64 mu M) compared with the parent parasites (EC50 25 mu M). Overexpression of genes in malaria parasites would have general application in the identification and validation of targets for antimalarial drugs.