97 resultados para Myocardial Doppler Velocity (mdv)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective-To compare the accuracy and feasibility of harmonic power Doppler and digitally subtracted colour coded grey scale imaging for the assessment of perfusion defect severity by single photon emission computed tomography (SPECT) in an unselected group of patients. Design-Cohort study. Setting-Regional cardiothoracic unit. Patients-49 patients (mean (SD) age 61 (11) years; 27 women, 22 men) with known or suspected coronary artery disease were studied with simultaneous myocardial contrast echo (MCE) and SPECT after standard dipyridamole stress. Main outcome measures-Regional myocardial perfusion by SPECT, performed with Tc-99m tetrafosmin, scored qualitatively and also quantitated as per cent maximum activity. Results-Normal perfusion was identified by SPECT in 225 of 270 segments (83%). Contrast echo images were interpretable in 92% of patients. The proportion of normal MCE by grey scale, subtracted, and power Doppler techniques were respectively 76%, 74%, and 88% (p < 0.05) at > 80% of maximum counts, compared with 65%, 69%, and 61% at < 60% of maximum counts. For each technique, specificity was lowest in the lateral wail, although power Doppler was the least affected. Grey scale and subtraction techniques were least accurate in the septal wall, but power Doppler showed particular problems in the apex. On a per patient analysis, the sensitivity was 67%, 75%, and 83% for detection of coronary artery disease using grey scale, colour coded, and power Doppler, respectively, with a significant difference between power Doppler and grey scale only (p < 0.05). Specificity was also the highest for power Doppler, at 55%, but not significantly different from subtracted colour coded images. Conclusions-Myocardial contrast echo using harmonic power Doppler has greater accuracy than with grey scale imaging and digital subtraction. However, power Doppler appears to be less sensitive for mild perfusion defects.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Although cardiac dysfunction in hereditary hemochromatosis (HHC) can be evaluated by conventional echocardiography, findings are often not specific. To test the hypothesis that the assessment of (1) conventional Doppler left ventricular filling indexes and (2) intrinsic elastic properties of the myocardium by Doppler tissue echocardiography can both enhance the accuracy of echocardiographic diagnosis of cardiac involvement in HHC, a group of 18 patients with HHC (mean age 50+/-7 years) and 22 age-matched healthy subjects were studied. The following indexes were characteristic for HHC: (1) the duration of atrial reversal measured from pulmonary venous flow (ms) was longer(118+/-20 vs 90+/-16; P

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background Diastolic dysfunction induced by ischemia may alter transmitral blood flow, but this reflects global ventricular function, and pseudonormalization may occur with increased preload. Tissue Doppler may assess regional diastolic function and is relatively load-independent, but limited data exist regarding its application to stress testing. We sought to examine the stress response of regional diastolic parameters to dobutomine echocardiography (DbE). Methods Sixty-three patients underwent study with DbE: 20 with low probability of coronary artery disease (CAD) and 43 with CAD who underwent angiography. A standard DbE protocol was used, and segments were categorized as ischemic, scar, or normal. Color tissue Doppler was acquired at baseline and peak stress, and waveforms in the basal and mid segments were used to measure early filling (Em), late filling (Am), and E deceleration time. Significant CAD was defined by stenoses >50% vessel diameter. Results Diastolic parameters had limited feasibility because of merging of Em and Am waves at high heart rates and limited reproducibility. Nonetheless, compared with normal segments, segments subtended with significant stenoses showed a lower Em velocity at rest (6.2 +/- 2.6 cm/s vs 4.8 +/- 2.2 cm/s, P < .0001) and peak (7.5 +/- 4.2 cm/s vs 5.1 +/- 3.6 cm/s, P < .0001), Abnormal segments also showed a shorter E deceleration time (51 +/- 27 ms vs 41 +/- 27 ms, P = .0001) at base and peak. No changes were documented in Am. The same pattern was seen with segments identified as ischemic with wall motion score. However, in the absence of ischemia, segments of patients with left ventricular hypertrophy showed a lower Em velocity, with blunted Em responses to stress. Conclusion Regional diastolic function is sensitive to ischemia. However, a number of practical limitations limit the applicability of diastolic parameters for the quantification of stress echocardiography.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Tissue Doppler may be used to quantify regional left ventricular function but is limited by segmental variation of longitudinal velocity from base to apex and free to septal walls. We sought to overcome this by developing a composite of longitudinal and radial velocities. Methods and Results. We examined 82 unselected patients undergoing a standard dobutamine echocardiogram. Longitudinal velocity was obtained in the basal and mid segments of each wall using tissue Doppler in the apical views. Radial velocities were derived in the same segments using an automated border detection system and centerline method with regional chords grouped according to segment location and temporally averaged. In 25 patients at low probability of coronary disease, the pattern of regional variation in longitudinal velocity (higher in the septum) was the opposite of radial velocity (higher in the free wall) and the combination was homogenous. In 57 patients undergoing angiography, velocity in abnormal segments was less than normal segments using longitudinal (6.0 +/- 3.6 vs 9.0 +/- 2.2 cm/s, P = .01) and radial velocity (6.0 +/- 4.0 vs 8.0 +/- 3.9 cm/s, P = .02). However, the composite velocity permitted better separation of abnormal and normal segments (13.3 +/- 5.6 vs 17.5 +/- 4.2 cm/s, P = .001). There was no significant difference between the accuracy of this quantitative approach and expert visual wall motion analysis (81% vs 84%, P = .56). Conclusion: Regional variation of uni-dimensional myocardial velocities necessitates site-specific normal ranges, probably because of different fiber directions. Combined analysis of longitudinal and radial velocities allows the derivation of a composite velocity, which is homogenous in all segments and may allow better separation of normal and abnormal myocardium.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tissue Doppler imaging allows assessment of left ventricular dyssynchrony and resynchronization after biventricular pacing.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report a case of a 34-year-old male with acute severe heart failure associated with marked concentric left ventricular wall thickening and biopsy evidence of eosinophilic myocardial infiltrate. This appears to be an unusual description of this degree of concentric myocardial thickening in eosinophilic myocarditis coupled with Doppler tissue echocardiography. Following high-dose corticosteroid treatment, wall thickness, systolic and diastolic left ventricular function normalized and the patient experienced a dramatic clinical improvement. (ECHOCARDIOGRAPHY, Volume 20, May 2003).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The extent of abnormality in patients with positive do-butamine echocardiography (DE) is predictive of risk, but the wall motion score (WMS) has low concordance among observers. We sought whether quantifying the extent of abnormal wall motion using tissue Doppler (TD) could guide risk assessment in patients with abnormal DE in 576 patients with known or suspected coronary artery disease; standard DE was combined with color TD imaging at peak dose. WMS was assessed by an expert observer and studies were identified as abnormal in the presence of 2:1 segments with resting or stress-induced wall motion abnormalities. Patients with abnormal DE had peak systolic velocity measured in each segment. Tissue tracking was used to measure myocardial displacement. Follow-up for death or infarction was per-formed after. 16 +/- 12 months. Of 251 patients with abnormal DE, 22 patients died (20 from cardiac causes) and 7 had nonfatal myocardial infarctionis. The average WMS in patients with events was 1.8 +/- 0.5, compared with 1.7 +/- 0.5 in patients without events (p = NS). The average systolic velocity in patients with events was 4.9 +/- 1.7 cm/s and 6.4 +/- 6.5 cm/s in the patients without events (p <0.001). The average tissue tracking in patients with events was 4.5 +/- 1.5 mm and was significant. (5.7 +/- 3.1 mm),in those,without events (p <0.001). Thus, TD is an alternative to WMS for quantifying the total extent of abnormal left ventricular function-at DE, and appears to be superior for predicting adverse outcomes. (C) 2004 by Excerpta Medica, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The metabolic syndrome (MS) is associated with cardiovascular risk exceeding that expected from atherosclerotic risk factors, but the mechanism of this association is unclear. We sought to determine the effects of the MS on myocardial and vascular function and cardiorespiratory fitness in 393 subjects with significant risk factors but no cardiovascular disease and negative stress echocardiographic findings. Myocardial function was assessed by global strain rate, strain, and regional systolic velocity (s(m)) and diastolic velocity (e(m)) using tissue Doppler imaging. Arterial compliance was assessed using the pulse pressure method, involving simultaneous radial applanation tonometry and echocardiographic measurement of stroke volume. Exercise capacity was measured by expired gas analysis. Significant and incremental variations in left ventricular systolic (s(m), global strain, and strain rate) and diastolic (e(m)) function were found according to the number of components of MS (p <0.001). MS contributed to reduced systolic and diastolic function even in those without left ventricular hypertrophy (p <0.01). A similar dose-response association was present between the number of components of the MS and exercise capacity (p <0.001) and arterial compliance. The global strain rate and em were independent predictors of exercise capacity. In conclusion, subclinical left ventricular dysfunction corresponded to the degree of metabolic burden, and these myocardial changes were associated with reduced cardiorespiratory fitness.' Subjects with MS who also have subclinical myocardial abnormalities and reduced cardiorespiratory fitness may have a higher risk of cardiovascular disease events and heart failure. (C) 2005 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: Tissue Doppler strain rate imaging (SRI) have been validated and applied in various clinical settings, but the clinical use of this modality is still limited due to time-consuming postprocessing, unfavorable signal to noise ratio and major angle dependency of image acquisition. 2D Strain (2DS) measures strain parameters through automated tissue tracking (Lagrangian strain) rather than tissue velocity regression. We sought to compare the accuracy of this technique with SRI and evaluate whether it overcomes the above limitations. Methods: We assessed 26 patients (13 female, age 60±5yrs) at low risk of CAD and with normal DSE at both baseline and peak stress. End systolic strain (ESS), peak systolic strain rate (SR), and timing parameters were measured by two independent observers using SRI and 2D Strain. Myocardial segments were excluded from the analyses if the insonation angle exceeded 30 degrees or if the segments were not visualized; 417 segments were evaluated. Results: Normal ranges for TVI and CEB approaches were comparable for SR (-0.99 ± 0.39 vs -0.88 ± 0.36, p=NS), ESS (-15.1 ± 6.5 vs -14.9 ± 6.3, p=NS), time to end of systole (174 ± 47 vs 174 ± 53, p=NS) and time to peak SR (TTP; 340 ± 34 vs 375 ± 57). The best correlations between the techniques were for time to end systole (rest r=0.6, p