49 resultados para MULTIPLE MEMORY-SYSTEMS
Resumo:
The experiment examined the influence of memory for prior instances on aircraft conflict detection. Participants saw pairs of similar aircraft repeatedly conflict with each other. Performance improvements suggest that participants credited the conflict status of familiar aircraft pairs to repeated static features such as speed, and dynamic features such as aircraft relative position. Participants missed conflicts when a conflict pair resembled a pair that had repeatedly passed safely. Participants either did not attend to, or interpret, the bearing of aircraft correctly as a result of false memory-based expectations. Implications for instance models and situational awareness in dynamic systems are discussed.
Resumo:
Background: The fact that some cancers and viral infections can be controlled by effector CD8 T cells led to the possibility of utilising minimal CD8 T cell epitope peptides as vaccines. However using minimal CD8 T cell epitope peptide immunisations and a tumour protection model in mice, we have previously shown that functional memory CD8 T cells are not generated unless CD4 T help is provided at the time of CD8 T cell priming. Short-lived effector cells nevertheless are generated in the absence of T help. Aim: To determine the role of CD4 T help in multiple immunisations. Method: Minimal CD8 T cell peptides of HPV16 E7 protein and Ovalbumin were used (with adjuvants Quil-A or IFA) as immunogens in C57BL mice. The presence of effector CD8 T cells were determined by tumour protection assays and was quantified by IFN-gamma ELISPOT assays. Results: In the present study we show that unless T help is provided at the time CD8 T cells are primed, no CD8 effector cells are generated when boosted with the vaccine again in the absence of T help. Our results further show that this failure could be prevented by the inclusion of a T helper peptide during the primary or booster immunisations.
Resumo:
A number of theoretical and experimental investigations have been made into the nature of purlin-sheeting systems over the past 30 years. These systems commonly consist of cold-formed zed or channel section purlins, connected to corrugated sheeting. They have proven difficult to model due to the complexity of both the purlin deformation and the restraint provided to the purlin by the sheeting. Part 1 of this paper presented a non-linear elasto plastic finite element model which, by incorporating both the purlin and the sheeting in the analysis, allowed the interaction between the two components of the system to be modelled. This paper presents a simplified version of the first model which has considerably decreased requirements in terms of computer memory, running time and data preparation. The Simplified Model includes only the purlin but allows for the sheeting's shear and rotational restraints by modelling these effects as springs located at the purlin-sheeting connections. Two accompanying programs determine the stiffness of these springs numerically. As in the Full Model, the Simplified Model is able to account for the cross-sectional distortion of the purlin, the shear and rotational restraining effects of the sheeting, and failure of the purlin by local buckling or yielding. The model requires no experimental or empirical input and its validity is shown by its goon con elation with experimental results. (C) 1997 Elsevier Science Ltd.
Resumo:
Telehealth programmes are rather similar to humans in the way that they are planned, develop, grow and ultimately die or disappear. To achieve good life expectancy for a telehealth programme there appear to be three major needs: nurturing, which includes the provision of money, ideas, education, training and innovation; experience, which involves an integrated management process, the achievement of long and wide patterns of usage, the development of updated policies and procedures and the involvement of multiple disciplines; success, which involves evidence of outcomes, evaluation and research, and, most important, the sharing of information through scientific and popular press publications, and conferences and collaborations with internal and external groups. The future of telehealth in Australia is at a watershed. There are now a substantial number of programmes, and there has been a large amount of financial and human investment in telehealth around the nation. There is, however, no forum for national leadership, no national association and little support at federal government level.
Resumo:
We investigate the absorption and dispersion properties of a two-level atom driven by a polychromatic field. The driving field is composed of a strong resonant (carrier) frequency component and a large number of symmetrically detuned sideband fields (modulators). A rapid increase in the absorption at the central frequency and the collapse of the response of the system from multiple frequencies to a single frequency are predicted to occur when the Rabi frequency of the modulating fields is equal to the Rabi frequency of the carrier field. These are manifestations of the undressing or a disentanglement of the atomic and driving field states, that leads to a collapse of the atom to its ground state. Our calculation permits consideration of the question of the undressing of the driven atom by a multiple-modulated field and the predicted spectra offer a method of observing undressing. Moreover, we find that the absorption and dispersion spectra split into multiplets whose structures depend on the Rabi frequency of the modulating fields. The spectral features can jump between different resonance frequencies by changing the Rabi frequency of the modulating fields or their initial phases, which can have potential applications as a quantum frequency filter.
Resumo:
This paper investigates the input-output characteristics of structural health monitoring systems for composite plates based on permanently attached piezoelectric transmitter and sensor elements. Using dynamic piezoelectricity theory and a multiple integral transform method to describe the propagating and scattered flexural waves an electro-mechanical model for simulating the voltage input-output transfer function for circular piezoelectric transmitters and sensors adhesively attached to an orthotropic composite plate is developed. The method enables the characterization of all three physical processes, i.e. wave generation, wave propagation and wave reception. The influence of transducer, plate and attached electrical circuit characteristics on the voltage output behaviour of the system is examined through numerical calculations, both in frequency and the time domain. The results show that the input-output behaviour of the system is not properly predicted by the transducers' properties alone. Coupling effects between the transducers and the tested structure have to be taken into account, and adding backing materials to the piezoelectric elements can significantly improve the sensitivity of the system. It is shown that in order to achieve maximum sensitivity, particular piezoelectric transmitters and sensors need to be designed according to the structure to be monitored and the specific frequency regime of interest.
Resumo:
The ATP-binding cassette (ABC) transporters are encoded by large gene families in plants. Although these proteins are potentially involved in a number of diverse plant processes, currently, very little is known about their actual functions. In this paper, through a cDNA microarray screening of anonymous cDNA clones from a subtractive library, we identified an Arabidopsis gene (AtPDR12) putatively encoding a member of the pleiotropic drug resistance (PDR) subfamily of ABC transporters. AtPDR12 displayed distinct induction profiles after inoculation of plants with compatible and incompatible fungal pathogens and treatments with salicylic acid, ethylene, or methyl jasmonate. Analysis of AtPDR12 expression in a number of Arabidopsis defense signaling mutants further revealed that salicylic acid accumulation, NPR1. function, and sensitivity to jasmonates and ethylene were all required for pathogen-responsive expression of AtPDR12. Germination assays using seeds from an AtPDR12 insertion line in the presence of sclareol resulted in lower germination rates and much stronger inhibition of root elongation in the AtPDR12 insertion line than in wild-type plants. These results suggest that AtPDR12 may be functionally related to the previously identified ABC transporters SpTUR2 and NpABC1, which transport sclareol. Our data also point to a potential role for terpenoids in the Arabidopsis defensive armory.
Resumo:
This paper is concerned with assessing the interference rejection capabilities of linear and circular array of dipoles that can be part of a base station of a code-division multiple-access cellular communication system. The performance criteria for signal-to-interference ratio (SIR) improvement employed in this paper is the spatial interference suppression coefficient. We first derive an expression for this figure of merit and then analyze and compare the SIR performance of the two types of arrays. For a linear array, we quantitatively assess the degradation in SIR performance, as we move from array broadside to array end-fire direction. In addition, the effect of mutual coupling is taken into account.
Resumo:
Recently, a 3D phantom that can provide a comprehensive and accurate measurement of the geometric distortion in MRI has been developed. Using this phantom, a full assessment of the geometric distortion in a number of clinical MRI systems (GE and Siemens) has been carried out and detailed results are presented in this paper. As expected, the main source of geometric distortion in modern superconducting MRI systems arises from the gradient field nonlinearity. Significantly large distortions with maximum absolute geometric errors ranged between 10 and 25 mm within a volume of 240 x 240 x 240 mm(3) were observed when imaging with the new generation of gradient systems that employs shorter coils. By comparison, the geometric distortion was much less in the older-generation gradient systems. With the vendor's correction method, the geometric distortion measured was significantly reduced but only within the plane in which these 2D correction methods were applied. Distortion along the axis normal to the plane was, as expected, virtually unchanged. Two-dimensional correction methods are a convenient approach and in principle they are the only methods that can be applied to correct geometric distortion in a single slice or in multiple noncontiguous slices. However, these methods only provide an incomplete solution to the problem and their value can be significantly reduced if the distortion along the normal of the correction plane is not small. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
What interactions are sufficient to simulate arbitrary quantum dynamics in a composite quantum system? It has been shown that all two-body Hamiltonian evolutions can be simulated using any fixed two-body entangling n-qubit Hamiltonian and fast local unitaries. By entangling we mean that every qubit is coupled to every other qubit, if not directly, then indirectly via intermediate qubits. We extend this study to the case where interactions may involve more than two qubits at a time. We find necessary and sufficient conditions for an arbitrary n-qubit Hamiltonian to be dynamically universal, that is, able to simulate any other Hamiltonian acting on n qubits, possibly in an inefficient manner. We prove that an entangling Hamiltonian is dynamically universal if and only if it contains at least one coupling term involving an even number of interacting qubits. For odd entangling Hamiltonians, i.e., Hamiltonians with couplings that involve only an odd number of qubits, we prove that dynamic universality is possible on an encoded set of n-1 logical qubits. We further prove that an odd entangling Hamiltonian can simulate any other odd Hamiltonian and classify the algebras that such Hamiltonians generate. Thus, our results show that up to local unitary operations, there are only two fundamentally different types of entangling Hamiltonian on n qubits. We also demonstrate that, provided the number of qubits directly coupled by the Hamiltonian is bounded above by a constant, our techniques can be made efficient.
Resumo:
Conflicting findings regarding the ability of people with schizophrenia to maintain and update semantic contexts have been due, arguably, to vagaries within the experimental design employed (e.g. whether strongly or remotely associated prime-target pairs have been used, what delay between the prime and the target was employed, and what proportion of related prime-target pairs appeared) or to characteristics of the participant cohort (e.g. medication status, chronicity of illness). The aim of the present study was to examine how people with schizophrenia maintain and update contextual information over an extended temporal window by using multiple primes that were either remotely associated or unrelated to the target. Fourteen participants with schizophrenia and 12 healthy matched controls were compared across two stimulus onset asynchronies (SOAs) (short and long) and two relatedness proportions (RP) (high and low) in a crossed design. Analysis of variance statistics revealed significant two- and three-way interactions between Group and SOA, Group and Condition, SOA and RP, and Group, SOA and RP. The participants with schizophrenia showed evidence of enhanced remote priming at the short SOA and low RP, combined with a reduction in the time course over which context could be maintained. There was some sensitivity to biasing contextual information at the short SOA, although the mechanism over which context served to update information appeared to be different from that in the controls. The participants with schizophrenia showed marked performance decrements at the long SOA (both low and high RP). Indices of remote priming at the short (but not the long) SOA correlated with both clinical ratings of thought disorder and with increasing length of illness. The results support and extend the hypothesis that schizophrenia is associated with concurrent increases in tonic dopamine activity and decreases in phasic dopamine activity. (C) 2004 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Increasing evidence suggests a link between attention, working memory, serotonin (5-HT), and prefrontal cortex activity. In an attempt to tease out the relationship between these elements, this study tested the effects of the hallucinogenic mixed 5-HT1A/2A receptor agonist psilocybin alone and after pretreatment with the 5-HT2A antagonist ketanserin. Eight healthy human volunteers were rested on a multiple-object tracking task and spatial working memory task under the four conditions: placebo, psilocybin (215 mu g/kg), ketanserin (50 mg), and psilocybin and ketanserin. Psilocybin significantly reduced attentional tracking ability, but had no significant effect on spatial working memory, suggesting a functional dissociation between the two tasks. Pretreatment with ketanserin did not attenuate the effect of psilocybin on attentional performance, suggestinga primary involvement of the 5-HT1A receptor in the observed defecit. Based on physiological and pharmacological data,we speculate that this impaired attentional performance may reflect a reduced ability to suppress or ignore distracting stimuli rather than reduced attentional capacity. The clinical relevance of these results is also discussed.