46 resultados para Forward error correcting code
Resumo:
OctVCE is a cartesian cell CFD code produced especially for numerical simulations of shock and blast wave interactions with complex geometries, in particular, from explosions. Virtual Cell Embedding (VCE) was chosen as its cartesian cell kernel for its simplicity and sufficiency for practical engineering design problems. The code uses a finite-volume formulation of the unsteady Euler equations with a second order explicit Runge-Kutta Godonov (MUSCL) scheme. Gradients are calculated using a least-squares method with a minmod limiter. Flux solvers used are AUSM, AUSMDV and EFM. No fluid-structure coupling or chemical reactions are allowed, but gas models can be perfect gas and JWL or JWLB for the explosive products. This report also describes the code’s ‘octree’ mesh adaptive capability and point-inclusion query procedures for the VCE geometry engine. Finally, some space will also be devoted to describing code parallelization using the shared-memory OpenMP paradigm. The user manual to the code is to be found in the companion report 2007/13.
Resumo:
OctVCE is a cartesian cell CFD code produced especially for numerical simulations of shock and blast wave interactions with complex geometries. Virtual Cell Embedding (VCE) was chosen as its cartesian cell kernel as it is simple to code and sufficient for practical engineering design problems. This also makes the code much more ‘user-friendly’ than structured grid approaches as the gridding process is done automatically. The CFD methodology relies on a finite-volume formulation of the unsteady Euler equations and is solved using a standard explicit Godonov (MUSCL) scheme. Both octree-based adaptive mesh refinement and shared-memory parallel processing capability have also been incorporated. For further details on the theory behind the code, see the companion report 2007/12.
Resumo:
The truncation errors associated with finite difference solutions of the advection-dispersion equation with first-order reaction are formulated from a Taylor analysis. The error expressions are based on a general form of the corresponding difference equation and a temporally and spatially weighted parametric approach is used for differentiating among the various finite difference schemes. The numerical truncation errors are defined using Peclet and Courant numbers and a new Sink/Source dimensionless number. It is shown that all of the finite difference schemes suffer from truncation errors. Tn particular it is shown that the Crank-Nicolson approximation scheme does not have second order accuracy for this case. The effects of these truncation errors on the solution of an advection-dispersion equation with a first order reaction term are demonstrated by comparison with an analytical solution. The results show that these errors are not negligible and that correcting the finite difference scheme for them results in a more accurate solution. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
We show that quantum feedback control can be used as a quantum-error-correction process for errors induced by a weak continuous measurement. In particular, when the error model is restricted to one, perfectly measured, error channel per physical qubit, quantum feedback can act to perfectly protect a stabilizer codespace. Using the stabilizer formalism we derive an explicit scheme, involving feedback and an additional constant Hamiltonian, to protect an (n-1)-qubit logical state encoded in n physical qubits. This works for both Poisson (jump) and white-noise (diffusion) measurement processes. Universal quantum computation is also possible in this scheme. As an example, we show that detected-spontaneous emission error correction with a driving Hamiltonian can greatly reduce the amount of redundancy required to protect a state from that which has been previously postulated [e.g., Alber , Phys. Rev. Lett. 86, 4402 (2001)].
Resumo:
This paper presents a method for estimating the posterior probability density of the cointegrating rank of a multivariate error correction model. A second contribution is the careful elicitation of the prior for the cointegrating vectors derived from a prior on the cointegrating space. This prior obtains naturally from treating the cointegrating space as the parameter of interest in inference and overcomes problems previously encountered in Bayesian cointegration analysis. Using this new prior and Laplace approximation, an estimator for the posterior probability of the rank is given. The approach performs well compared with information criteria in Monte Carlo experiments. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Analysis of a major multi-site epidemiologic study of heart disease has required estimation of the pairwise correlation of several measurements across sub-populations. Because the measurements from each sub-population were subject to sampling variability, the Pearson product moment estimator of these correlations produces biased estimates. This paper proposes a model that takes into account within and between sub-population variation, provides algorithms for obtaining maximum likelihood estimates of these correlations and discusses several approaches for obtaining interval estimates. (C) 1997 by John Wiley & Sons, Ltd.
Resumo:
We examine constraints on quantum operations imposed by relativistic causality. A bipartite superoperator is said to be localizable if it can be implemented by two parties (Alice and Bob) who share entanglement but do not communicate, it is causal if the superoperator does not convey information from Alice to Bob or from Bob to Alice. We characterize the general structure of causal complete-measurement superoperators, and exhibit examples that are causal but not localizable. We construct another class of causal bipartite superoperators that are not localizable by invoking bounds on the strength of correlations among the parts of a quantum system. A bipartite superoperator is said to be semilocalizable if it can be implemented with one-way quantum communication from Alice to Bob, and it is semicausal if it conveys no information from Bob to Alice. We show that all semicausal complete-measurement superoperators are semi localizable, and we establish a general criterion for semicausality. In the multipartite case, we observe that a measurement superoperator that projects onto the eigenspaces of a stabilizer code is localizable.