70 resultados para Differential equations, Nonlinear -- Numerical solutions -- Computer programs
Resumo:
A generic method for the estimation of parameters for Stochastic Ordinary Differential Equations (SODEs) is introduced and developed. This algorithm, called the GePERs method, utilises a genetic optimisation algorithm to minimise a stochastic objective function based on the Kolmogorov-Smirnov statistic. Numerical simulations are utilised to form the KS statistic. Further, the examination of some of the factors that improve the precision of the estimates is conducted. This method is used to estimate parameters of diffusion equations and jump-diffusion equations. It is also applied to the problem of model selection for the Queensland electricity market. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In this paper we discuss implicit Taylor methods for stiff Ito stochastic differential equations. Based on the relationship between Ito stochastic integrals and backward stochastic integrals, we introduce three implicit Taylor methods: the implicit Euler-Taylor method with strong order 0.5, the implicit Milstein-Taylor method with strong order 1.0 and the implicit Taylor method with strong order 1.5. The mean-square stability properties of the implicit Euler-Taylor and Milstein-Taylor methods are much better than those of the corresponding semi-implicit Euler and Milstein methods and these two implicit methods can be used to solve stochastic differential equations which are stiff in both the deterministic and the stochastic components. Numerical results are reported to show the convergence properties and the stability properties of these three implicit Taylor methods. The stability analysis and numerical results show that the implicit Euler-Taylor and Milstein-Taylor methods are very promising methods for stiff stochastic differential equations.
Resumo:
In this paper we construct predictor-corrector (PC) methods based on the trivial predictor and stochastic implicit Runge-Kutta (RK) correctors for solving stochastic differential equations. Using the colored rooted tree theory and stochastic B-series, the order condition theorem is derived for constructing stochastic RK methods based on PC implementations. We also present detailed order conditions of the PC methods using stochastic implicit RK correctors with strong global order 1.0 and 1.5. A two-stage implicit RK method with strong global order 1.0 and a four-stage implicit RK method with strong global order 1.5 used as the correctors are constructed in this paper. The mean-square stability properties and numerical results of the PC methods based on these two implicit RK correctors are reported.
Resumo:
Stochastic differential equations (SDEs) arise from physical systems where the parameters describing the system can only be estimated or are subject to noise. Much work has been done recently on developing higher order Runge-Kutta methods for solving SDEs numerically. Fixed stepsize implementations of numerical methods have limitations when, for example, the SDE being solved is stiff as this forces the stepsize to be very small. This paper presents a completely general variable stepsize implementation of an embedded Runge Kutta pair for solving SDEs numerically; in this implementation, there is no restriction on the value used for the stepsize, and it is demonstrated that the integration remains on the correct Brownian path.
Resumo:
Time delay is an important aspect in the modelling of genetic regulation due to slow biochemical reactions such as gene transcription and translation, and protein diffusion between the cytosol and nucleus. In this paper we introduce a general mathematical formalism via stochastic delay differential equations for describing time delays in genetic regulatory networks. Based on recent developments with the delay stochastic simulation algorithm, the delay chemical masterequation and the delay reaction rate equation are developed for describing biological reactions with time delay, which leads to stochastic delay differential equations derived from the Langevin approach. Two simple genetic regulatory networks are used to study the impact of' intrinsic noise on the system dynamics where there are delays. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
First-year undergraduate engineering students' understanding of the units of factors and terms in first-order ordinary differential equations used in modelling contexts was investigated using diagnostic quiz questions. Few students appeared to realize that the units of each term in such equations must be the same, or if they did, nevertheless failed to apply that knowledge when needed. In addition, few students were able to determine the units of a proportionality factor in a simple equation. These results indicate that lecturers of modelling courses cannot take this foundational knowledge for granted and should explicitly include it in instruction.
Resumo:
In Part 1 of this paper a methodology for back-to-back testing of simulation software was described. Residuals with error-dependent geometric properties were generated. A set of potential coding errors was enumerated, along with a corresponding set of feature matrices, which describe the geometric properties imposed on the residuals by each of the errors. In this part of the paper, an algorithm is developed to isolate the coding errors present by analysing the residuals. A set of errors is isolated when the subspace spanned by their combined feature matrices corresponds to that of the residuals. Individual feature matrices are compared to the residuals and classified as 'definite', 'possible' or 'impossible'. The status of 'possible' errors is resolved using a dynamic subset testing algorithm. To demonstrate and validate the testing methodology presented in Part 1 and the isolation algorithm presented in Part 2, a case study is presented using a model for biological wastewater treatment. Both single and simultaneous errors that are deliberately introduced into the simulation code are correctly detected and isolated. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
Numerical solutions of the sediment conservation law are reviewed in terms of their application to bed update schemes in coastal morphological models. It is demonstrated that inadequately formulated numerical techniques lead to the introduction of diffusion, dispersion and the bed elevation oscillations previously reported in the literature. Four different bed update schemes are then reviewed and tested against benchmark analytical solutions. These include a first order upwind scheme, two Lax-Wendroff schemes and a non-oscillating centred scheme (NOCS) recently applied to morphological modelling by Saint-Cast [Saint-Cast, F., 2002. Modelisation de la morphodynamique des corps sableux en milieu littoral (Modelling of coastal sand banks morphodynamics), University Bordeaux 1, Bordeaux, 245 pp.]. It is shown that NOCS limits and controls numerical errors while including all the sediment flux gradients that control morphological change. Further, no post solution filtering is required, which avoids difficulties with selecting filter strength. Finally, NOCS is compared to a recent Lax-Wendroff scheme with post-solution filtering for a longer term simulation of the morphological evolution around a trained river entrance. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Introductory courses covering modem physics sometimes introduce some elementary ideas from general relativity, though the idea of a geodesic is generally limited to shortest Euclidean length on a curved surface of two spatial dimensions rather than extremal aging in spacetime. It is shown that Epstein charts provide a simple geometric picture of geodesics in one space and one time dimension and that for a hypothetical uniform gravitational field, geodesics are straight lines on a planar diagram. This means that the properties of geodesics in a uniform field can be calculated with only a knowledge of elementary geometry and trigonometry, thus making the calculation of some basic results of general relativity accessible to students even in an algebra-based survey course on physics.