136 resultados para Chloride Conductance


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modulation of the cytochrome P450 (CYP) monooxygenase system and haem oxygenase by cadmium was investigated in male, adult DBA/2J mice treated with a single dose (16 Amol/kg body weight, i.p.) of cadmium chloride (CdCl2), at various time points. Total CYP content of liver microsomes decreased significantly (P < 0.05) at 12, 18, and 24 hours (22%, 47%, and 56%, respectively) after treatment. In contrast, progressive increases of hepatic coumarin 7-hydroxylase (COH) activity (indicative of CYP2A5 activity) were observed at 8 hrs (2-fold), 12 hrs (3-fold), and 7-fold at 18 and 24 hrs. Simultaneously, haem oxygenase activity increased significantly at 4 hours and continued to increase progressively to more than 50-fold compared to control. Liver CYP2A5 mRNA levels increased maximally 12 hours after treatment and decreased to almost half 6 hours later, while western blot analysis showed 2- and 3- fold increase in CYP2A5 apoprotein at 12 and 24 hours. The CYP2A5 mRNA levels in the liver increased after Cd treatment in Nrf2 +/+ but not in Nrf2 / mouse. This study demonstrates that hepatic haem oxygenase and CYP2A5 are upregulated by cadmium. The upregulation of haem oxygenase precedes that of CYP2A5. The strong upregulation of the CYP2A5 both at mRNA and enzyme activity levels, with a simultaneous decrease in the total CYP concentration suggest an unusual mode of regulation of CYP2A5 in response to cadmium exposure, amongst the CYP enzymes. The observed increase in the mRNA but not in protein levels after maximal induction may suggest involvement of post-transcriptional mechanisms in the regulation. Upregulation of CYP2A5 by cadmium in the Nrf2 +/+ mice but not in the Nrf2 / mice indicates a role for this transcription factor in the regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dependence of currents through the cyclic nucleotide-gated (CNG) channels of mammalian olfactory receptor neurons (ORNs) on the concentration of NaCl was studied in excised inside-out patches from their dendritic knobs using the patch-clamp technique. With a saturating concentration (100 mu M) of adenosine 3', 5'-cyclic monophosphate (cAMP), the changes in the reversal potential of macroscopic currents were studied at NaCl concentrations from 25 to 300 mM. In symmetrical NaCl solutions without the addition of divalent cations, the current-voltage relations were almost linear, reversing close to O mV. When the external NaCl concentration was maintained at 150 mM and the internal concentrations were varied, the reversal potentials of the cAMP-activated currents closely followed the Na+ equilibrium potential indicating that P-Cl/P-Na approximate to 0. However, at low external NaCl concentrations (less than or equal to 100 mM) there was some significant chloride permeability. Our results further indicated that Na+ currents through these channels: (i) did not obey the independence principle; (ii) showed saturation kinetics with K(m)s in the range of 100-150 mM and (iii) displayed a lack of voltage dependence of conductance in asymmetric solutions that suggested that ion-binding sites were situated midway along the channel. Together, these characteristics indicate that the permeation properties of the olfactory CNG channels are significantly different from those of photoreceptor CNG channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The open channel diameter of Escherichia coli recombinant large-conductance mechanosensitive ion channels (MscL) was estimated using the model of Hille (Hille, B. 1968. Pharmacological modifications of the sodium channels of frog nerve. J. Gen. Physiol. 51:199-219)that relates the pore size to conductance. Based on the MscL conductance of 3.8 nS, and assumed pore lengths, a channel diameter of 34 to 46 Angstrom was calculated. To estimate the pore size experimentally, the effect of large organic ions on the conductance of MscL was examined. Poly-L-lysines (PLLs) with a diameter of 37 Angstrom or larger significantly reduced channel conductance, whereas spermine (similar to 15 Angstrom), PLL19 (similar to 25 Angstrom) and 1,1'-bis-(3-(1'-methyl-(4,4'-bipyridinium)-1-yl)-propyl)-4,4'-bipyridinium (similar to 30 Angstrom) had no effect. The smaller organic ions putrescine, cadaverine, spermine, and succinate all permeated the channel. We conclude that the open pore diameter of the MscL is similar to 40 Angstrom, indicating that the MscL has one of the largest channel pores yet described. This channel diameter is consistent with the proposed homohexameric model of the MscL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The K+ channel KCNQ1 (K(V)LQT1) is a voltage-gated K+ channel, coexpressed with regulatory subunits such as KCNE1 (IsK, mink) or KCNE3, depending on the tissue examined. Here, we investigate regulation and properties of human and rat KCNQ1 and the impact of regulators such as KCNE1 and KCNE3. Because the cystic fibrosis transmembrane conductance regulator (CFTR) has also been suggested to regulate KCNQ1 channels we studied the effects of CFTR on KCNQ1 in Xenopus oocytes, Expression of both human and rat KCNQ1 induced time dependent K+ currents that were sensitive to Ba2+ and 293B. Coexpression with KCNE1 delayed voltage activation, while coexpression with KCNE3 accelerated current activation. KCNQ1 currents were activated by an increase in intracellular cAMP, independent of coexpression with KCNE1 or KCNE3. cAMP dependent activation was abolished in N-terminal truncated hKCNQ1 but was still detectable after deletion of a single PKA phosphorylation motif. In the presence but not in the absence of KCNE1 or KCNE3, K+ currents were activated by the Ca2+ ionophore ionomycin. Coexpression of CFTR with either human or rat KCNQ1 had no impact on regulation of KCNQ1 K+ currents by cAMP but slightly shifted the concentration response curve for 293B. Thus, KCNQ1 expressed in Xenopus oocytes is regulated by cAMP and Ca2+ but is not affected by CFTR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cystic fibrosis transmembrane conductance regulator (CFTR) has been shown previously to be regulated by inhibitory G proteins. In the present study, we demonstrate inhibition of CFTR by alphaG(i2) and alphaG(i1), but not alphaG(0), in Xenopus oocytes. We further examined whether regulators of G protein signaling (RGS) proteins interfere with alphaG(i)-dependent inhibition of CFTR. Activation of CFTR by IBMX and forskolin was attenuated in the presence of alphaG(i2), indicating inhibition of CFTR by alphaG(i2) in Xenopus oocytes. Coexpression of the proteins RGS3 and RGS7 together with CFTR and alphaG(i2) partially recovered activation by IBMX/forskolin. 14-3-3, a protein that is known to interfere with RGS proteins, counteracted the effects of RGS3. These data demonstrate the regulation of CFTR by alphaG(i) in Xenopus oocytes. Because RGS proteins interfere with the G protein-dependent regulation of CFTR, this may offer new potential pathways for pharmacological intervention in cystic fibrosis. (C) 2001 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. More than 1300 different mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) cause cystic fibrosis (CF), a disease characterized by deficient epithelial Cl- secretion and enhanced Na+ absorption. The clinical course of the disease is determined by the progressive lung disease. Thus, novel approaches in pharmacotherapy are based primarily on correction of the ion transport defect in the airways. 2. The current therapeutic strategies try to counteract the deficiency in Cl- secretion and the enhanced Na+ absorption. A number of compounds have been identified, such as genistein and xanthine derivatives, which directly activate mutant CFTR. Other compounds may activate alternative Ca2+-activated Cl- channels or basolateral K+ channels, which supply the driving force for Cl- secretion. Apart from that, Na+ channel blockers, such as phenamil and benzamil, are being explored, which counteract the hyperabsorption of NaCl in CF airways. 3. Clinical trials are under way using purinergic compounds such as the P2Y(2) receptor agonist INS365. Activation of P2Y(2) receptors has been found to both activate Cl- secretion and inhibit Na+ absorption. 4. The ultimate goal is to recover Cl- channel activity of mutant CFTR by either enhancing synthesis and expression of the protein or by activating silent CFTR Cl- channels. Strategies combining these drugs with compounds facilitating Cl- secretion and inhibiting Na+ absorption in vivo may have the best chance to counteract the ion transport defect in cystic fibrosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activation of the CFTR Cl- channel inhibits epithelial Na+ channels (ENaC), according to studies on epithelial cells and overexpressing recombinant cells. Here we demonstrate that ENaC is inhibited during stimulation of the cystic fibrosis trans-membrance conductance regulator (CFTR) in Xenopus oocytes, independent of the experimental set-up and the magnitude of the whole-cell current. Inhibition of ENaC is augmented at higher CFTR Cl- currents. Similar to CFTR, ClC-0 Cl- currents also inhibit ENaC, as well as high extracellular Na+ and Cl- in partially permeabilized oocytes. Thus, inhibition of ENaC is not specific to CFTR and seems to be mediated by Cl-.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of the antihelmintic, ivermectin, were investigated in recombinantly expressed human alpha (1) homomeric and alpha (1)beta heteromeric glycine receptors (GlyRs), At low (0.03 muM) concentrations ivermectin potentiated the response to sub-saturating glycine concentrations, and at higher (greater than or equal to0.03 muM) concentrations it irreversibly activated both alpha (1) homomeric and alpha (1)beta heteromeric GlyRs. Relative to glycine-gated currents, ivermectin-gated currents exhibited a dramatically reduced sensitivity to inhibition by strychnine, picrotoxin, and zinc. The insensitivity to strychnine could not be explained by ivermectin preventing the access of strychnine to its binding site. Furthermore, the elimination of a known glycine- and strychnine-binding site by site-directed mutagenesis had little effect on ivermectin sensitivity, demonstrating that the ivermectin- and glycine-binding sites were not identical. Ivermectin strongly and irreversibly activated a fast-desensitizing mutant GlyR after it had been completely desensitized by a saturating concentration of glycine. Finally, a mutation known to impair dramatically the glycine signal transduction mechanism had little effect on the apparent affinity or efficacy of ivermectin, Together, these findings indicate that ivermectin activates the GlyR by a novel mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the residues responsible for the reduced picrotoxin sensitivity of the alpha beta heteromeric glycine receptor relative to the alpha homomeric receptor. By analogy with structurally related receptors, the beta subunit M2 domain residues P278 and F282 were considered the most likely candidates for mediating this effect. These residues align with G254 and T258 of the alpha subunit. The T258A, T258C and T258F mutations dramatically reduced the picrotoxin sensitivity of the alpha homomeric receptor. Furthermore, the converse F282T mutation in the beta subunit increased the picrotoxin sensitivity of the alpha beta heteromeric receptor. The P278G mutation in the beta subunit did not affect the picrotoxin sensitivity of the alpha beta heteromer. Thus, a ring of five threonines at the M2 domain depth corresponding to alpha subunit T258 is specifically required for picrotoxin sensitivity. Mutations to alpha subunit T258 also profoundly influenced the apparent glycine affinity. A substituted cysteine accessibility analysis revealed that the T258C sidechain increases its pore exposure in the channel open state. This provides further evidence for an allosteric mechanism of picrotoxin inhibition, but renders it unlikely that picrotoxin las an allosterically acting 'competitive' antagonist) binds to this residue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. An ATP-sensitive K+ (K-ATP) conductance has been identified using the perforated patch recording configuration in a population (52%) of dissociated neurones from adult rat intracardiac ganglia. The presence of the sulphonylurea receptor in approximately half of the intracardiac neurones was confirmed by labelling with fluorescent glibenclamide-BODIPY. 2. Under current clamp conditions in physiological solutions, leveromakalim (10 muM) evoked a hyperpolarization, which was inhibited by the sulphonylurea drugs glibenclamide and tolbutamide. 3. Under voltage clamp conditions in symmetrical (140 mM) K+ solutions, hath application of levcromakalim evoked an inward current with a density of similar to8 pA pF(-1) at -50 mV and a slope conductance of similar to9 nS, which reversed close to the potassium equilibrium potential (E-K). Cell dialysis with an ATP-free intracellular solution also evoked an inward current, which was inhibited by tolbutamide. 4. Bath application of either glibenclamide (10 muM) or tolbutamide (100 muM) depolarized adult intracardiac neurones by 3-5 mV, suggesting that a K-ATP conductance is activated under resting conditions and contributes to the resting membrane potential. 5. Activation of a membrane current by levcromakalim leas concentration dependent, with an EC50 of 1.6 muM. Inhibition of the levcromakalim-activated current by glibenclamide leas also concentration dependent, with an IC50 of 55 nM. 6. Metabolic inhibition with 2,4-dinitrophenol and iodoacetic acid or superfusion with hypoxic solution (P-O2 similar to 16 mmHg) also activated a membrane current. These currents exhibited similar I-P characteristics to the levcroinakalim-induced current and were inhibited by glibenclamide. 7. Activation of K-ATP channels in mammalian intracardiac neurones may contribute to changes in neural regulation of the mature heart and. cardiac function during ischaemia-reperfusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The properties of single Ca2+-activated K+ (BK) channels in neonatal rat intracardiac neurons were investigated using the patch-clamp recording technique. In symmetrical 140 mM K+, the single-channel slope conductance was linear in the voltage range -60/+60 mV. and was 207+/-19 pS. Na+ ions were not measurably permeant through the open channel. Channel activity increased with the cytoplasmic free Ca2+ concentration ([Ca2+],) with a Hill plot giving a half-saturating [Ca2+] (K-0.5) of 1.35 muM and slope of congruent to3. The BK channel was inhibited reversibly by external tetraethylammonium (TEA) ions, charybdotoxin, and quinine and was resistant to block by 4-aminopyridine and apamin. Ionomycin (1-10 muM) increased BK channel activity in the cell-attached recording configuration. The resting activity was consistent with a [Ca2+](i)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two studies were conducted to examine the effects of including NaCl at various rates in grain-based supplements for Friesian cows grazing established, dominant (>90%), rainfed kikuyu (Pennisetum clandestinum cv. Common) pastures during summer and autumn in a humid sub-tropical environment. In study 1 (19 January-27 March 1998), 48 cows (36 multiparous, 12 primiparous; 27-96 days postpartum) were allocated to one of four groups based on genetic merit, milk production, liveweight (LW) and days postpartum. They were fed (2.7 kg dry matter (DM) per cow, twice-a-day) one of four isoenergetic and isonitrogenous barley grain-based concentrates containing NaCl at concentrations (% as-fed) of either 0 (SC1), 1.1 (SC2), 2.2 (SC3) or 3.3 (SC4). Maximum temperature humidity index (THImax) was greater than or equal to78 during 50% of the experimental period. Concentrate NaCl content had no effect (P>0.05) on daily milk yield or LW change but daily yields of 4% fat corrected milk (FCM), fat and protein were higher (P0.05) among treatments at 7.6+/-1.24 kg DM per cow. In study 2 (18 January 1999-1 March 1999), 48 cows (32 pluriparous, 16 primiparous: 32-160 days postpartum) were fed (2.7 kg DM per cow twice-a-day) one of two isoenergetic and isonitrogenous barley grain-based concentrates containing NaCl at concentrations (% as-fed) of 0 (control) or 2.2 (HSC). THImax was greater than or equal to78 during 34% of days in the experimental period. Yields of milk, FCM, fat and protein were lower (P0.05) by concentrate NaCl content. These studies indicate that NaCl supplementation can be beneficial in terms of milk production during warm, humid conditions as opposed to milder conditions. (C) 2002 Elsevier Science B.V. All rights reserved.