149 resultados para Boundary Integral Equation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A general graded reflection equation algebra is proposed and the corresponding boundary quantum inverse scattering method is formulated. The formalism is applicable to all boundary lattice systems where an invertible R-matrix exists. As an application, the integrable open-boundary conditions for the q-deformed supersymmetric U model of strongly correlated electrons are investigated. The diagonal boundary K-matrices are found and a class of integrable boundary terms are determined. The boundary system is solved by means of the coordinate space Bethe ansatz technique and the Bethe ansatz equations are derived. As a sideline, it is shown that all R-matrices associated with a quantum affine superalgebra enjoy the crossing-unitarity property. (C) 1998 Elsevier Science B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The assessment of groundwater conditions within an unconfined aquifer with a periodic boundary condition is of interest in many hydrological and environmental problems. A two-dimensional numerical model for density dependent variably saturated groundwater flow, SUTRA (Voss, C.I., 1984. SUTRA: a finite element simulation model for saturated-unsaturated, fluid-density dependent ground-water flow with energy transport or chemically reactive single species solute transport. US Geological Survey, National Center, Reston, VA) is modified in order to be able to simulate the groundwater flow in unconfined aquifers affected by a periodic boundary condition. The basic flow equation is changed from pressure-form to mixed-form. The model is also adjusted to handle a seepage-face boundary condition. Experiments are conducted to provide data for the groundwater response to the periodic boundary condition for aquifers with both vertical and sloping faces. The performance of the numerical model is assessed using those data. The results of pressure- and mixed-form approximations are compared and the improvement achieved through the mixed-form of the equation is demonstrated. The ability of the numerical model to simulate the water table and seepage-face is tested by modelling some published experimental data. Finally the numerical model is successfully verified against present experimental results to confirm its ability to simulate complex boundary conditions like the periodic head and the seepage-face boundary condition on the sloping face. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of the present investigation was to gain an understanding of the nature of the carbon contamination on the surface of standard steel transmission electron spectroscopy (TEM) specimens, the effect of exposure of a clean specimen to normal laboratory air, and the efficacy of plasma-cleaning treatments. This knowledge is a necessary prerequisite to the development of appropriate specimen preparation and/or specimen cleaning methods. X-ray photoelectron spectroscopy in combination with argon ion beam profiling was used to characterize the specimen surfaces of X65 steel and 316 stainless steel. The only clean carbon-free surface obtained was that during argon etching of the sample in the surface analysis chamber. Any exposure of a previously cleaned sample to laboratory air resulted in a rapid carbon (hydrocarbon) contamination of the sample surface and the development of surface oxidation, Plasma cleaning with subsequent exposure of the specimen to the laboratory air also resulted in a carbon-contaminated surface. This suggests that procedures of preparation of TEM specimens of steels outside an ultrahigh vacuum chamber are unlikely to result in the lowering of contamination rates on specimens to levels where measurements for carbon in the grain boundaries are possible. What is needed is a cleaning system as an integral part of the specimen insertion system into the field-emission scanning transmission electron microscope. This cleaning could be carried out by argon ion etching. Copyright (C) 2000 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tidal water table fluctuations in a coastal aquifer are driven by tides on a moving boundary that varies with the beach slope. One-dimensional models based on the Boussinesq equation are often used to analyse tidal signals in coastal aquifers. The moving boundary condition hinders analytical solutions to even the linearised Boussinesq equation. This paper presents a new perturbation approach to the problem that maintains the simplicity of the linearised one-dimensional Boussinesq model. Our method involves transforming the Boussinesq equation to an ADE (advection-diffusion equation) with an oscillating velocity. The perturbation method is applied to the propagation of spring-neap tides (a bichromatic tidal system with the fundamental frequencies wt and wt) in the aquifer. The results demonstrate analytically, for the first time, that the moving boundary induces interactions between the two primary tidal oscillations, generating a slowly damped water table fluctuation of frequency omega(1) - omega(2), i.e., the spring-neap tidal water table fluctuation. The analytical predictions are found to be consistent with recently published field observations. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The q-deformed supersymmetric t-J model on a semi-infinite lattice is diagonalized by using the level-one vertex operators of the quantum affine superalgebra U-q[sl(2\1)]. We. give the bosonization of the boundary states. We give an integral expression for the correlation functions of the boundary model, and derive the difference equations which they satisfy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We obtain a class of non-diagonal solutions of the reflection equation for the trigonometric A(n-1)((1)) vertex model. The solutions can be expressed in terms of intertwinner matrix and its inverse, which intertwine two trigonometric R-matrices. In addition to a discrete (positive integer) parameter l, 1 less than or equal to l less than or equal to n, the solution contains n + 2 continuous boundary parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three kinds of integrable Kondo impurity additions to one-dimensional q-deformed extended Hubbard models are studied by means of the boundary Z(2)-graded quantum inverse scattering method. The boundary K matrices depending on the local magnetic moments of the impurities are presented as nontrivial realisations of the reflection equation algebras in an impurity Hilbert space. The models are solved by using the algebraic Bethe ansatz method, and the Bethe ansatz equations are obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Izergin-Korepin model on a semi-infinite lattice is diagonalized by using the level-one vertex operators of the twisted quantum affine algebra U-q[((2))(2)]. We give the bosonization of the vacuum state with zero particle content. Excitation states are given by the action of the vertex operators on the vacuum state. We derive the boundary S-matrix. We give an integral expression of the correlation functions of the boundary model, and derive the difference equations which they satisfy. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We establish existence results for solutions to three-point boundary value problems for nonlinear, second-order, ordinary differential equations with nonlinear boundary conditions. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We establish existence of solutions for a finite difference approximation to y = f(x, y, y ') on [0, 1], subject to nonlinear two-point Sturm-Liouville boundary conditions of the form g(i)(y(i),y ' (i)) = 0, i = 0, 1, assuming S satisfies one-sided growth bounds with respect to y '. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study difference equations which arise as discrete approximations to two-point boundary value problems for systems of second-order ordinary differential equations. We formulate conditions which guarantee a priori bounds on first differences of solutions to the discretized problem. We establish existence results for solutions to the discretized boundary value problems subject to nonlinear boundary conditions. We apply our results to show that solutions to the discrete problem converge to solutions of the continuous problem in an aggregate sense. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We give conditions on f involving pairs of discrete lower and discrete upper solutions which lead to the existence of at least three solutions of the discrete two-point boundary value problem yk+1 - 2yk + yk-1 + f (k, yk, vk) = 0, for k = 1,..., n - 1, y0 = 0 = yn,, where f is continuous and vk = yk - yk-1, for k = 1,..., n. In the special case f (k, t, p) = f (t) greater than or equal to 0, we give growth conditions on f and apply our general result to show the existence of three positive solutions. We give an example showing this latter result is sharp. Our results extend those of Avery and Peterson and are in the spirit of our results for the continuous analogue. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the continuous problem y"=f(x,y,y'), xc[0,1], 0=G((y(0),y(1)),(y'(0), y'(1))), and its discrete approximation (y(k+1)-2y(k)+y(k-1))/h(2) =f(t(k), y(k), v(k)), k = 1,..., n-1, 0 = G((y(0), y(n)), (v(1), v(n))), where f and G = (g(0), g(1)) are continuous and fully nonlinear, h = 1/n, v(k) = (y(k) - y(k-1))/h, for k =1,..., n, and t(k) = kh, for k = 0,...,n. We assume there exist strict lower and strict upper solutions and impose additional conditions on f and G which are known to yield a priori bounds on, and to guarantee the existence of solutions of the continuous problem. We show that the discrete approximation also has solutions which approximate solutions of the continuous problem and converge to the solution of the continuous problem when it is unique, as the grid size goes to 0. Homotopy methods can be used to compute the solution of the discrete approximation. Our results were motivated by those of Gaines.