61 resultados para Blood-flow Measurements
Resumo:
Clinical evaluation of arterial potency in acute ST-elevation myocardial infarction (STEMI) is unreliable. We sought to identify infarction and predict infarct-related artery potency measured by the Thrombolysis In Myocardial Infarction (TIMI) score with qualitative and quantitative intravenous myocardial contrast echocardiography (MCE). Thirty-four patients with suspected STEMI underwent MCE before emergency angiography and planned angioplasty. MCE was performed with harmonic imaging and variable triggering intervals during intravenous administration of Optison. Myocardial perfusion was quantified offline, fitting an exponential function to contrast intensity at various pulsing intervals. Plateau myocardial contrast intensity (A), rate of rise (beta), and myocardial flow (Q = A x beta) were assessed in 6 segments. Qualitative assessment of perfusion defects was sensitive for the diagnosis of infarction (sensitivity 93%) and did not differ between anterior and inferior infarctions. However, qualitative assessment had only moderate specificity (50%), and perfusion defects were unrelated to TIMI flow. In patients with STEMI, quantitatively derived myocardial blood flow Q (A x beta) was significantly lower in territories subtended by an artery with impaired (TIMI 0 to 2) flow than those territories supplied by a reperfused artery with TIMI 3 flow (10.2 +/- 9.1 vs 44.3 +/- 50.4, p = 0.03). Quantitative flow was also lower in segments with impaired flow in the subtending artery compared with normal patients with TIMI 3 flow (42.8 +/- 36.6, p = 0.006) and all segments with TIMI 3 flow (35.3 +/- 32.9, p = 0.018). An receiver-operator characteristic curve derived cut-off Q value of
Resumo:
Inactivity is associated with endothelial dysfunction and the development of cardiovascular disease. Exercise training has a favourable effect in the management of hypertension, heart failure and ischaemic heart disease. These beneficial effects are probably mediated through improvements of vascular function and, in this issue of Clinical Science, Hagg and co-authors propose a coronary artery effect. The use of a Doppler technique for non-invasive assessment of coronary flow reserve in a small animal model is an exciting aspect of this study. If feasible in the hands of other investigators, the availability of sequential coronary flow measurements in animal models may help improve our understanding of the mechanisms of disorders of the coronary circulation.
Resumo:
Background: Qualitative interpretation of myocardial contrast echocardiography (MCE) improves the accuracy of wall-motion analysis for assessment of coronary artery disease (CAD). We examined the feasibility and accuracy of quantitative MCE for diagnosis of CAD. Methods: Dipyridamole/exercise stress MCE (destruction-replenishment protocol with real-time imaging) was performed in 90 patients undergoing quantitative coronary angiography, 48 of whom had significant (> 50%) stenoses. MCE was repeated with exercise alone in 18 patients. Myocardial blood flow (A*beta) was obtained from blood volume (A) and time to refill (beta). Results: Quantification of flow reserve was feasible in 88%. The mean A*beta reserve in the anterior wall was significantly impaired for patients with left anterior descending coronary artery disease (n = 28) compared with those with no disease (1.6 +/- 1.2 vs; 4.0 +/- 2.5, P <=.001). This reflected impaired beta reserve, with no difference in the A reserve. Applying a receiver operating characteristic curve derived cutoff of 2.0 for A*beta reserve, quantitative MCE was 76% sensitive and 71% specific for the diagnosis of significant left anterior descending coronary artery stenosis. Posterior circulation results were similar, with 78% sensitivity and 59% specificity for detection of posterior CAD. Overall, quantitative MCE was similarly sensitive to qualitative approach for diagnosis of CAD (88% vs 93%), but with lower specificity (52% vs 65%, P =.07). In 18 patients restudied with pure exercise stress, the mean myocardial blood flow reserve was less than after combined stress (2.1 +/- 1.6 vs 3.7 +/- 1.9, P =.01). Conclusion: Quantitative MCE is feasible for the diagnosis of CAD with dipyridamole/exercise stress. Dipyridamole prolongs postexercise hyperemia, augmenting the degree of hyperemia at the time of imaging.
Resumo:
Weight reduction in clinical populations of severely obese children has been shown to have beneficial effects on blood pressure, but little is known about the effect of weight gain among children in the general population. This study compares the mean blood pressure at 14 years of age with the change in overweight status between ages 5 and 14. Information from 2794 children born in Brisbane, Australia, and who were followed up since birth and had body mass index (BMI) and blood pressure measurements at ages 5 and 14 were used. Systolic and diastolic blood pressure at age 14 was the main outcomes and different patterns of change in BMI from age 5 to 14 were the main exposure. Those who changed from being overweight at age 5 to having normal BMI at age 14 had similar mean blood pressures to those who had a normal BMI at both time points: age- and sex-adjusted mean difference in systolic blood pressure 1.54 ( - 0.38, 3.45) mm Hg and in diastolic blood pressure 0.43 ( - 0.95, 1.81) mm Hg. In contrast, those who were overweight at both ages or who had a normal BMI at age 5 and were overweight at age 14 had higher blood pressure at age 14 than those who had a normal BMI at both times. These effects were independent of a range of potential confounding factors. Our findings suggest that programs that successfully result in children changing from overweight to normal-BMI status for their age may have important beneficial effects on subsequent blood pressure.
Resumo:
Objective: Transcranial Doppler (TCD) ultrasonography is a technique that uses a hand-held Doppler transducer (placed on the surface of the cranial skin) to measure the velocity and pulsatility of blood flow within the intracranial and the extracranial arteries. This review critically evaluates the evidence for the use of TCD in the critical care population. Discussion: TCD has been frequently employed for the clinical evaluation of cerebral vasospasm following subarachnoid haemorrhage (SAH). To a lesser degree, TCD has also been used to evaluate cerebral autoregulatory capacity, monitor cerebral circulation during cardiopulmonary bypass and carotid endarterectomies and to diagnose brain death. Technological advances such as M mode, colour Doppler and three-dimensional power Doppler ultrasonography have extended the scope of TCD to include other non-critical care applications including assessment of cerebral emboli, functional TCD and the management of sickle cell disease. Conclusions: Despite publications suggesting concordance between TCD velocity measurements and cerebral blood flow there are few randomized controlled studies demonstrating an improved outcome with the use of TCD monitoring in neurocritical care. Newer developments in this technology include venous Doppler, functional Doppler and use of ultrasound contrast agents.
Resumo:
In Australian twins participating in three different studies (1979-1996), the contribution of genetic and environmental influences to variation in resting systolic (SBP) and diastolic blood pressure (DBP) was studied. The sample consisted of 368 monozygotic and 335 dizygotic twin pairs with measurements for both individuals. Blood pressure measurements in two studies were available for 115 complete twin pairs, and 49 twin pairs had measurements in three studies. This allowed assessment of blood pressure tracking over an average period of 12 years in the age range of 23 to 45 years. Multivariate analyses showed significant heritability (h(2)) of blood pressure in all studies (SBP h(2) = 19%-56%, DBP h(2) = 37%-52%). In addition, the analyses showed that the blood pressure tracking was explained by the same set of genetic factors. These results replicate an earlier finding in Dutch twins that also showed stability of the contribution of genetic factors to blood pressure tracking.
Resumo:
Rectangular dropshafts, commonly used in sewers and storm water systems, are characterised by significant flow aeration. New detailed air-water flow measurements were conducted in a near-full-scale dropshaft at large discharges. In the shaft pool and outflow channel, the results demonstrated the complexity of different competitive air entrainment mechanisms. Bubble size measurements showed a broad range of entrained bubble sizes. Analysis of streamwise distributions of bubbles suggested further some clustering process in the bubbly flow although, in the outflow channel, bubble chords were in average smaller than in the shaft pool. A robust hydrophone was tested to measure bubble acoustic spectra and to assess its field application potential. The acoustic results characterised accurately the order of magnitude of entrained bubble sizes, but the transformation from acoustic frequencies to bubble radii did not predict correctly the probability distribution functions of bubble sizes.
Resumo:
This study aims to provide some new understanding of the air-water flow properties in high-velocity water jets discharging past an abrupt drop. Such a setup has been little studied to date despite the relevance to bottom outlets. Downstream of the step brink, the free-jet entrains air at both upper and lower air-water interfaces, as well as along the sides. An air-water shear layer develops at the lower nappe interface. At the lower nappe, the velocity redistribution was successfully modelled and the velocity field was found to be similar to that in two-dimensional wake flow. The results highlighted further two distinct flow regions. Close to the brink (Wex < 5000), the flow was dominated by momentum transfer. Further downstream (Wex > 5000), a strong competition between air bubble diffusion and momentum exchanges took place.
Resumo:
The anatomy of the crocodilian heart and major arteries has fascinated people for a very long time. The first scientific paper seems to be that by the Italian anatomist Bartolomeo Panizza in 1833 who wrote about the structure of the heart and the circulation of the blood in /Crocodilys lucius/, an early name for the American Alligator. Since 1833 there have been many papers and the crocodilian heart has attracted the attention of generation after generation of anatomists and physiologists with ever-increasingly sophisticated investigatory techniques being applied to questions about the functional significance of the puzzlingly complex anatomy.
Resumo:
A hydraulic jump is characterised by strong energy dissipation and air entrainment. In the present study, new air-water flow measurements were performed in hydraulic jumps with partially-developed flow conditions in relatively large-size facilities with phase-detection probes. The experiments were conducted with identical Froude numbers, but a range of Reynolds numbers and relative channel widths. The results showed drastic scale effects at small Reynolds numbers in terms of void fraction and bubble count rate distributions. The void fraction distributions implied comparatively greater detrainment at low Reynolds numbers leading to a lesser overall aeration of the jump roller, while dimensionless bubble count rates were drastically lower especially in the mixing layer. The experimental results suggested also that the relative channel width had little effect on the air-water flow properties for identical inflow Froude and Reynolds numbers.
Resumo:
The use of aspirin as an anti-platelet drug is limited by its propensity to induce gastric injury and by its adverse effect on vascular prostacyclin formation. Two phenolic non-steroidal anti-inflammatory drugs (salicyclic acid and diflunisal) were modified by esterification with a series of O-acyl moieties. The short-term ulcerogenic in vitro and in vivo anti-platelet properties, pharmacodynamic profiles, and extent of hepatic extraction of these phenolic esters were compared with aspirin (acetylsalicylic acid). The more lipophilic esters (longer carbon chain length in O-acyl group) show significantly less gastrotoxicity in stressed rats than does aspirin after a single oral dose. The in vitro and in vivo anti-platelet studies show that these phenolic esters inhibited (1) arachidonate-triggered human platelet aggregation and (2) thrombin-stimulated rat serum thromboxane Ag production by platelets in the clotting process almost as effectively as aspirin. The hepatic extractions of these O-acyl derivatives are significantly higher than those of aspirin. The pharmacodynamic studies show that these O-acyl derivatives of salicylic acid and diflunisal probably bind to, or combine with, the same site on the platelet cyclooxygenase as aspirin. Replacing the O-acetyl group with longer chain O-acyl moiety in this series of phenolic esters markedly reduced the potential of these agents to induce short-term gastric injury but did not lessen their activity as inhibitors of platelet aggregation. These non-acetyl salicylates may therefore represent a novel class of anti-platelet drugs with less ulcerogenic potential.
Resumo:
The conventional convection-dispersion (also called axial dispersion) model is widely used to interrelate hepatic availability (F) and clearance (Cl) with the morphology and physiology of the liver and to predict effects such as changes in liver blood flow on F and Cl. An extended form of the convection-dispersion model has been developed to adequately describe the outflow concentration-time profiles for vascular markers at both short and long times after bolus injections into perfused livers. The model, based on flux concentration and a convolution of catheters and large vessels, assumes that solute elimination in hepatocytes follows either fast distribution into or radial diffusion in hepatocytes. The model includes a secondary vascular compartment, postulated to be interconnecting sinusoids. Analysis of the mean hepatic transit time (MTT) and normalized variance (CV2) of solutes with extraction showed that the discrepancy between the predictions of MTT and CV2 for the extended and conventional models are essentially identical irrespective of the magnitude of rate constants representing permeability, volume, and clearance parameters, providing that there is significant hepatic extraction. In conclusion, the application of a newly developed extended convection-dispersion model has shown that the unweighted conventional convection-dispersion model can be used to describe the disposition of extracted solutes and, in particular, to estimate hepatic availability and clearance in booth experimental and clinical situations.
Resumo:
A number of techniques have been developed to study the disposition of drugs in the head and, in particular, the role of the blood-brain barrier (BBB) in drug uptake. The techniques can be divided into three groups: in-vitro, in-vivo and in-situ. The most suitable method depends on the purpose(s) and requirements of the particular study being conducted. In-vitro techniques involve the isolation of cerebral endothelial cells so that direct investigations of these cells can be carried out. The most recent preparations are able to maintain structural and functional characteristics of the BBB by simultaneously culturing endothelial cells with astrocytic cells,The main advantages of the in-vitro methods are the elimination of anaesthetics and surgery. In-vivo methods consist of a diverse range of techniques and include the traditional Brain Uptake Index and indicator diffusion methods, as well as microdialysis and positron emission tomography. In-vivo methods maintain the cells and vasculature of an organ in their normal physiological states and anatomical position within the animal. However, the shortcomings include renal acid hepatic elimination of solutes as well as the inability to control blood flow. In-situ techniques, including the perfused head, are more technically demanding. However, these models have the ability to vary the composition and flow rate of the artificial perfusate. This review is intended as a guide for selecting the most appropriate method for studying drug uptake in the brain.
Resumo:
Anomalies of movement are observed both clinically and experimentally in schizophrenia. While the basal ganglia have been implicated in its pathogenesis, the nature of such involvement is equivocal. The basal ganglia may be involved in bimanual coordination through their input to the supplementary motor area (SMA). While a neglected area of study in schizophrenia. a bimanual movement task may provide a means of assessing the functional integrity of the motor circuit. Twelve patients with chronic schizophrenia and 12 matched control participants performed a bimanual movement task on a set of vertically mounted cranks at different speeds (1 and 2 Hz) and phase relationships. Participants performed in-phase movements (hands separated by 0 degrees) and out-of-phase movements (hands separated by 180 degrees) at both speeds with an external cue on or off. All participants performed the in-phase movements well. irrespective of speed or cueing conditions. Patients with schizophrenia were unable to perform the out-of-phase movements, particularly at the faster speed, reverting instead to the in-phase movement. There was no effect of external cueing on any of the movement conditions. These results suggest a specific problem of bimanual coordination indicative of SMA dysfunction per se and/or faulty callosal integration. A disturbance in the ability to switch attention during the out-of-phase task may also be involved. (C) 2001 Academic Press.
Resumo:
With the advent of functional neuroimaging techniques, in particular functional magnetic resonance imaging (fMRI), we have gained greater insight into the neural correlates of visuospatial function. However, it may not always be easy to identify the cerebral regions most specifically associated with performance on a given task. One approach is to examine the quantitative relationships between regional activation and behavioral performance measures. In the present study, we investigated the functional neuroanatomy of two different visuospatial processing tasks, judgement of line orientation and mental rotation. Twenty-four normal participants were scanned with fMRI using blocked periodic designs for experimental task presentation. Accuracy and reaction time (RT) to each trial of both activation and baseline conditions in each experiment was recorded. Both experiments activated dorsal and ventral visual cortical areas as well as dorsolateral prefrontal cortex. More regionally specific associations with task performance were identified by estimating the association between (sinusoidal) power of functional response and mean RT to the activation condition; a permutation test based on spatial statistics was used for inference. There was significant behavioral-physiological association in right ventral extrastriate cortex for the line orientation task and in bilateral (predominantly right) superior parietal lobule for the mental rotation task. Comparable associations were not found between power of response and RT to the baseline conditions of the tasks. These data suggest that one region in a neurocognitive network may be most strongly associated with behavioral performance and this may be regarded as the computationally least efficient or rate-limiting node of the network.