30 resultados para Alpha 2 adrenergic receptor
Resumo:
3-Fluoromethyl-7-(N-substituted aminosulfonyl)-1,2,3,4-tetrahydroisoquinolines (14, 16, and 18-22) are highly potent and selective inhibitors of phenylethanolamine N-methyltransferase (PNMT). Molecular modeling studies with 3-fluoromethyl-7-(N-alkyl aminosulfonyl)-1,2,3,4-tetrahydroisoquinolines, such as 16, suggested that the sulfonamide -NH-could form a hydrogen bond with the side chain of Lys57. However, SAR studies and analysis of the crystal structure of human PNMT (hPNMT) in complex with 7 indicated that the sulfonamide oxygens, and not the sulfonamide -NH-, formed favorable interactions with the enzyme. Thus, we hypothesized that replacement of the sulfonamide -NH-with a methylene group could result in compounds that would retain potency at PNMT and that would have increased lipophilicity, thus increasing the likelihood they will cross the blood brain barrier. A series of 3-fluoromethyl-7-sulfonyl-1,2,3,4-tetrahydroisoquinolines (23-30) were synthesized and evaluated for their PNMT inhibitory potency and affinity for the R2-adrenoceptor. A comparison of these compounds with their isosteric sulfonamides (14, 16, and 18-22) showed that the sulfones were more lipophilic but less potent than their corresponding sulfonamides. Sulfone 24 (hPNMT K-i = 1.3 mu M) is the most potent compound in this series and is quite selective for PNMT versus the R2-adrenoceptor, but 24 is less potent than the corresponding sulfonamide, 16 (hPNMT K-i = 0.13 mu M). We also report the crystal structure of hPNMT in complex with sulfonamide 15, from which a potential hydrogen bond acceptor within the hPNMT active site has been identified, the main chain carbonyl oxygen of Asn39. The interaction of this residue with the sulfonamide -NH-is likely responsible for much of the enhanced inhibitory potency of the sulfonamides versus the sulfones.
Resumo:
Motivation: While processing of MHC class II antigens for presentation to helper T-cells is essential for normal immune response, it is also implicated in the pathogenesis of autoimmune disorders and hypersensitivity reactions. Sequence-based computational techniques for predicting HLA-DQ binding peptides have encountered limited success, with few prediction techniques developed using three-dimensional models. Methods: We describe a structure-based prediction model for modeling peptide-DQ3.2 beta complexes. We have developed a rapid and accurate protocol for docking candidate peptides into the DQ3.2 beta receptor and a scoring function to discriminate binders from the background. The scoring function was rigorously trained, tested and validated using experimentally verified DQ3.2 beta binding and non-binding peptides obtained from biochemical and functional studies. Results: Our model predicts DQ3.2 beta binding peptides with high accuracy [area under the receiver operating characteristic (ROC) curve A(ROC) > 0.90], compared with experimental data. We investigated the binding patterns of DQ3.2 beta peptides and illustrate that several registers exist within a candidate binding peptide. Further analysis reveals that peptides with multiple registers occur predominantly for high-affinity binders.
Resumo:
The yield behaviour of a series of melt-mixed polyethylene-modified montmorillonite nanocomposites has been studied as a function of temperature and strain rate and compared to the behaviour of the base polymer. The processing conditions used gave an intercalated structure as assessed by X-ray diffraction. Although there was a modest improvement in stiffness with clay content, the yield behaviour was insensitive to the addition of the clay. Both the base polymer and the nanocomposites showed double yield points. These were analysed as activated rate processes, with the activation energies consistent with the low strain yield point being associated with the alpha(2) molecular relaxation and the higher strain yield point with W axis slip. (C) 2003 Society of Chemical Industry.
Resumo:
Let {a(1), a(2), ..., a(n)} be a set of n distinct real numbers and let alpha(1), alpha(2), ..., alpha(n) an be a permutation of the numbers. We construct the permutation to maximise L-f = Sigma(i=1)(n) f(\alpha(i+1) - alpha(i)\), for any increasing concave function f, where we denote alpha(n+1) equivalent to alpha(1). The optimal permutation depends on the particular numbers {a(1), a(2), ..., a(n)} and the function f, contrary to a postulate by Chao and Liang (European J. Combin. 13 (1992) 325). (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
It is shown that a linear superposition of two macroscopically distinguishable optical coherent states can be generated using a single photon source and simple all-optical operations. Weak squeezing on a single photon, beam mixing with an auxiliary coherent state, and photon detecting with imperfect threshold detectors are enough to generate a coherent state superposition in a free propagating optical field with a large coherent amplitude (alpha>2) and high fidelity (F>0.99). In contrast to all previous schemes to generate such a state, our scheme does not need photon number resolving measurements nor Kerr-type nonlinear interactions. Furthermore, it is robust to detection inefficiency and exhibits some resilience to photon production inefficiency.
Resumo:
The crystal structures of human phenylethanolamine N-methyltransferase in complex with S-adenosyl-L-homocysteine (7, AdoHcy) and either 7-iodo-1,2,3,4-tetrahydroisoquinoline (2) or 8,9-dichloro-2,3,4,5-tetrahydro-1H-2-benzazepine (3, LY134046) were determined and compared with the structure of the enzyme complex with 7 and 7-aminosulfonyl-1,2,3,4-tetrahydroisoquinoline (1, SK&F 29661). The enzyme is able to accommodate a variety of chemically disparate functional groups on the aromatic ring of the inhibitors through adaptation of the binding pocket for this substituent and by subtle adjustments of the orientation of the inhibitors within the relatively planar binding site. In addition, the interactions formed by the amine nitrogen of all three inhibitors reinforce the hypothesis that this functional group mimics the beta-hydroxyl of norepinephrine rather than the amine. These studies provide further clues for the development of improved inhibitors for use as pharmacological probes.
Auxiliary subunit regulation of high-voltage activated calcium channels expressed in mammalian cells
Resumo:
The effects of auxiliary calcium channel subunits on the expression and functional properties of high-voltage activated (HVA) calcium channels have been studied extensively in the Xenopus oocyte expression system, but are less completely characterized in a mammalian cellular environment. Here, we provide the first systematic analysis of the effects of calcium channel beta and alpha(2)-delta subunits on expression levels and biophysical properties of three different types (Ca(v)1.2, Ca(v)2.1 and Ca(v)2.3) of HVA calcium channels expressed in tsA-201 cells. Our data show that Ca(v)1.2 and Ca(v)2.3 channels yield significant barium current in the absence of any auxiliary subunits. Although calcium channel beta subunits were in principle capable of increasing whole cell conductance, this effect was dependent on the type of calcium channel alpha(1) subunit, and beta(3) subunits altogether failed to enhance current amplitude irrespective of channel subtype. Moreover, the alpha(2)-delta subunit alone is capable of increasing current amplitude of each channel type examined, and at least for members of the Ca(v)2 channel family, appears to act synergistically with beta subunits. In general agreement with previous studies, channel activation and inactivation gating was regulated both by beta and by alpha(2)-delta subunits. However, whereas pronounced regulation of inactivation characteristics was seen with the majority of the auxiliary subunits, effects on voltage dependence of activation were only small (< 5 mV). Overall, through a systematic approach, we have elucidated a previously underestimated role of the alpha(2)-delta(1) subunit with regard to current enhancement and kinetics. Moreover, the effects of each auxiliary subunit on whole cell conductance and channel gating appear to be specifically tailored to subsets of calcium channel subtypes.
Resumo:
Secretion of mucins and exudation of plasma are distinct processes of importance to innate immunity and inflammatory disease. Yet, little is known about their relation in human airways. The objective of the present study was to use the human nasal airway to determine mucinous secretion and plasma exudation in response to common challenge agents and mediators. Ten healthy volunteers were subjected to nasal challenge-lavage procedures. Thus, the nasal mucosa was exposed to increasing doses of histamine (40 and 400 mu g ml(-1)), methacholine (12.5 and 25 mg) and capsaicin (30 and 300 ng ml(-1)). Fucose was selected as a global marker of mucinous secretion and alpha(2)-macroglobulin as an index of exudation of bulk plasma. All challenge agents increased the mucosal output of fucose to about the same level (P < 0.01-0.05). Once significant secretion had been induced the subsequently increased dose of the challenge agent, in the case of histamine and methacholine, failed to further increase the response. Only histamine increased the mucosal output of alpha(2)-macroglobulin (P < 0.01). We conclude that prompt but potentially rapidly depleted mucinous secretion is common to different kinds of airway challenges, whereas inflammatory histamine-type mediators are required to produce plasma exudation. Along with the acknowledged secretion of mucins, a practically non-depletable, pluripotent mucosal output of plasma emerges as an important component of the innate immunity of human airways.
Resumo:
Liquidus isotherms and phase equilibria have been determined experimentally for a pseudo-ternary section of the form MnO-(CaO+MgO)-(SiO2+Al2O3) with a fixed Al-2,O-3,/SiO2, weight ratio of 0.17 and MgO/CaO weight ratio of 0.17 for temperatures in the range 1473-1673 K. The primary phase fields present for the section investigated include manganosite (Mn,Mg,Ca)O; dicalcium silicate alpha-2(Ca,Mg,Mn)O (.) SiO2; merwinite 3CaO(.) ((Mg,Mn)O.2SiO(2); wollastonite [(Ca,Mg,Mn)(OSiO2)-Si-.]; ;tephroite [2(Mn,Mg)O.SiO2]; rhodonite [(Mn,Mg)O. diopside [(CaO,MgO,MnO,Al2O3)(SiO2)-Si-.]; tridymite (SiO2), SiO2] and melilite [2CaO (.) (MgO,MnO,Al2O3).2(SiO2,Al2O3)]. The liquidus temperatures relevant to ferro-manganese and silico-manganese smelting slags have been determined. The liquiclus temperature is shown to be principally dependent on the modified basicity weight ratio (CaO+Mgo)/(SiO2+Al2O3) at low MnO concentrations, and dependent on the mole ratio (CaO+ MgO+MnO)/(SiO2+Al2O3) at higher MnO concentrations.
Resumo:
Deterioration in stratum corneum reticular patterning (skin pattern or skin wrinkling) has been associated with increased rates of solar keratoses and skin cancer. A previous analysis of data from the twin sample used in this investigation has shown that 86% of the variation in skin pattern is genetic at age 12 and 62% in an adult sample (mean age 47.5). Variation due to genetic influences is likely to be influenced by more than one locus. Here, we present results of a genome-wide linkage scan of skin pattern in adolescent twins and siblings from 428 nuclear twin families. Sib-pair linkage analysis was performed on skin pattern data collected from twins at age 12 (378 informative families) and 14 (316 families). Suggestive linkage was found at marker D12S397 (12p13.31, logarithm of the odds (lod) 1.94), when the effect of the trait locus was modelled to influence the skin pattern equally at both ages 12 and 14. In the same analysis, a peak was seen at 4q23 with a lod score of 1.55. A possible candidate for the peak at 12p13.31 is the protease inhibitor, alpha-2-macroglobulin.
Resumo:
Pyrin domain (PYD)-containing proteins are key components of pathways that regulate inflammation, apoptosis, and cytokine processing. Their importance is further evidenced by the consequences of mutations in these proteins that give rise to autoimmune and hyperinflammatory syndromes. PYDs, like other members of the death domain ( DD) superfamily, are postulated to mediate homotypic interactions that assemble and regulate the activity of signaling complexes. However, PYDs are presently the least well characterized of all four DD subfamilies. Here we report the three-dimensional structure and dynamic properties of ASC2, a PYD-only protein that functions as a modulator of multidomain PYD-containing proteins involved in NF-KB and caspase-1 activation. ASC2 adopts a six-helix bundle structure with a prominent loop, comprising 13 amino acid residues, between helices two and three. This loop represents a divergent feature of PYDs from other domains with the DD fold. Detailed analysis of backbone N-15 NMR relaxation data using both the Lipari-Szabo model-free and reduced spectral density function formalisms revealed no evidence of contiguous stretches of polypeptide chain with dramatically increased internal motion, except at the extreme N and C termini. Some mobility in the fast, picosecond to nanosecond timescale, was seen in helix 3 and the preceding alpha 2-alpha 3 loop, in stark contrast to the complete disorder seen in the corresponding region of the NALP1 PYD. Our results suggest that extensive conformational flexibility in helix 3 and the alpha 2-alpha 3 loop is not a general feature of pyrin domains. Further, a transition from complete disorder to order of the alpha 2-alpha 3 loop upon binding, as suggested for NALP1, is unlikely to be a common attribute of pyrin domain interactions.
Resumo:
We compared changes in markers of muscle damage and systemic inflammation after submaximal and maximal lengthening muscle contractions of the elbow flexors. Using a cross-over design, 10 healthy young men not involved in resistance training completed a submaximal trial (10 sets of 60 lengthening contractions at 10% maximum isometric strength, 1 min rest between sets), followed by a maximal trial (10 sets of three lengthening contractions at 100% maximum isometric strength, 3 min rest between sets). Lengthening contractions were performed on an isokinetic dynamometer. Opposite arms were used for the submaximal and maximal trials, and the trials were separated by a minimum of two weeks. Blood was sampled before, immediately after, 1 h, 3 h, and 1-4 d after each trial. Total leukocyte and neutrophil numbers, and the serum concentration of soluble tumor necrosis factor-alpha receptor 1 were elevated after both trials (P < 0.01), but there were no differences between the trials. Serum IL-6 concentration was elevated 3 h after the submaximal contractions (P < 0.01). The concentrations of serum tumor necrosis factor-alpha, IL-1 receptor antagonist, IL-10, granulocyte-colony stimulating factor and plasma C-reactive protein remained unchanged following both trials. Maximum isometric strength and range of motion decreased significantly (P < 0.001) after both trials, and were lower from 1-4 days after the maximal contractions compared to the submaximal contractions. Plasma myoglobin concentration and creatine kinase activity, muscle soreness and upper arm circumference all increased after both trials (P < 0.01), but were not significantly different between the trials. Therefore, there were no differences in markers of systemic inflammation, despite evidence of greater muscle damage following maximal versus submaximal lengthening contractions of the elbow flexors.
Resumo:
The structures of acetylcholine-binding protein ( AChBP) and nicotinic acetylcholine receptor ( nAChR) homology models have been used to interpret data from mutagenesis experiments at the nAChR. However, little is known about AChBP-derived structures as predictive tools. Molecular surface analysis of nAChR models has revealed a conserved cleft as the likely binding site for the 4/7 alpha-conotoxins. Here, we used an alpha 3 beta 2 model to identify beta 2 subunit residues in this cleft and investigated their influence on the binding of alpha-conotoxins MII, PnIA, and GID to the alpha 3 beta 2 nAChR by two-electrode voltage clamp analysis. Although a beta 2-L119Q mutation strongly reduced the affinity of all three alpha-conotoxins, beta 2-F117A, beta 2-V109A, and beta 2-V109G mutations selectively enhanced the binding of MII and GID. An increased activity of alpha-conotoxins GID and MII was also observed when the beta 2-F117A mutant was combined with the alpha 4 instead of the alpha 3 subunit. Investigation of A10L-PnIA indicated that high affinity binding to beta 2-F117A, beta 2-V109A, and beta 2-V109G mutants was conferred by amino acids with a long side chain in position 10 (PnIA numbering). Docking simulations of 4/7 alpha-conotoxin binding to the alpha 3 beta 2 model supported a direct interaction between mutated nAChR residues and alpha-conotoxin residues 6, 7, and 10. Taken together, these data provide evidence that the beta subunit contributes to alpha-conotoxin binding and selectivity and demonstrate that a small cleft leading to the agonist binding site is targeted by alpha-conotoxins to block the nAChR.
Resumo:
Context and Objective: Hip fracture is partially genetically determined. The present study was designed to examine the contributions of vitamin D receptor (VDR) and collagen I alpha 1 (COLIA1) genotypes to the liability to hip fracture in postmenopausal women. Design: The study was designed as a prospective population-based cohort investigation. Subjects: Six hundred seventy-seven postmenopausal women of Caucasian background, aged 70 +/- 7 yr (mean +/- SD), have been followed for up to 14 yr. Sixty-nine women had sustained a hip fracture during the period. Main Outcome: Atraumatic hip fractures were prospectively identified through radiologists' reports. Bone mineral density (BMD) at the hip and lumbar spine was measured by dual-energy x-ray absorptiometry. Genotypes: The TaqI and SpI COLIA1 polymorphisms of the VDR and COLIA1 genes were determined. Using the Single Nucleotide Polymorphism database, VDR TT, Tt, and tt genotypes were coded as TT, TC, and CC, whereas COLIA1 SS, Ss, and ss were coded as GG, GT, and TT. Results: Women with VDR CC genotype (16% prevalence) and COLIA1 TT genotype (5% prevalence) had an increased risk of hip fracture [odds ratio (OR) associated with CC, 2.6; 95% confidence interval (CI), 1.2-5.3; OR associated with TT, 3.8; 95% CI, 1.3-10.8] after adjustment for femoral neck BMD (OR, 3.4 per SD; 95% CI, 2.3-5.0) and age (OR, 1.4 per 5 yr; 95% CI, 1.1-1.7). Approximately 20 and 12% of the liability to hip fracture was attributable to the presence of the CC genotype and TT genotype, respectively. Conclusion: The VDR CC genotype and COLIA1 TT genotype were associated with increased hip fracture risk in Caucasian women, and this association was independent of BMD and age.
Resumo:
Disulfide bonds are important structural motifs that play an essential role in maintaining the conformational stability of many bioactive peptides. Of particular importance are the conotoxins, which selectively target a wide range of ion channels that are implicated in numerous disease states. Despite the enormous potential of conotoxins as therapeutics, their multiple disulfide bond frameworks are inherently unstable under reducing conditions. Reduction or scrambling by thiol-containing molecules such as glutathione or serum albumin in intracellular or extracellular environments such as blood plasma can decrease their effectiveness as drugs. To address this issue, we describe a new class of selenoconotoxins where cysteine residues are replaced by selenocysteine to form isosteric and non-reducible diselenide bonds. Three isoforms of alpha-conotoxin ImI were synthesized by t-butoxycarbonyl chemistry with systematic replacement of one([ Sec(2,8)] ImI or [Sec(3,12)] ImI), or both([Sec(2,3,8,12)] ImI) disulfide bonds with a diselenide bond. Each analogue demonstrated remarkable stability to reduction or scrambling under a range of chemical and biological reducing conditions. Three-dimensional structural characterization by NMR and CD spectroscopy indicates conformational preferences that are very similar to those of native ImI, suggesting fully isomorphic structures. Additionally, full bioactivity was retained at the alpha(7) nicotinic acetylcholine receptor, with each seleno-analogue exhibiting a dose-response curve that overlaps with wild-type ImI, thus further supporting an isomorphic structure. These results demonstrate that selenoconotoxins can be used as highly stable scaffolds for the design of new drugs.