91 resultados para Acyl-CoA dehydrogenase
Resumo:
Albicidins, a family of potent antibiotics and phytotoxins produced by the sugarcane leaf scald pathogen Xanthomonas albilineans, inhibit DNA replication in bacteria and plastids. A gene located by Tn5-tagging was confirmed by complementation to participate in albicidin biosynthesis. The gene (xabB) encodes a large protein (predicted Mr 525695), with a modular architecture indicative of a multifunctional polyketide synthase (PKS) linked to a non-ribosomal peptide synthetase (NRPS). At 4801 amino acids in length, XabB is the largest reported PKS–NRPS. Twelve catalytic domains in this multifunctional enzyme are arranged in the order N terminus–acyl-CoA ligase (AL)–acyl carrier protein (ACP)–ß-ketoacyl synthase (KS)–ß-ketoacyl reductase (KR)–ACP–ACP–KS–peptidyl carrier protein (PCP)–condensation (C)–adenylation–PCP–C. The modular architecture of XabB indicates likely steps in albicidin biosynthesis and approaches to enhance antibiotic yield. The novel pattern of domains, in comparison with known PKS–NRPS enzymes for antibiotic production, also contributes to the knowledge base for rational design of enzymes producing novel antibiotics.
Resumo:
Dimethyl sulphide dehydrogenase catalyses the oxidation of dimethyl sulphide to dimethyl sulphoxide (DMSO) during photoautotrophic growth of Rhodovulum sulfidophilum . Dimethyl sulphide dehydrogenase was shown to contain bis (molybdopterin guanine dinucleotide)Mo, the form of the pterin molybdenum cofactor unique to enzymes of the DMSO reductase family. Sequence analysis of the ddh gene cluster showed that the ddhA gene encodes a polypeptide with highest sequence similarity to the molybdop-terin-containing subunits of selenate reductase, ethylbenzene dehydrogenase. These polypeptides form a distinct clade within the DMSO reductase family. Further sequence analysis of the ddh gene cluster identified three genes, ddhB , ddhD and ddhC . DdhB showed sequence homology to NarH, suggesting that it contains multiple iron-sulphur clusters. Analysis of the N-terminal signal sequence of DdhA suggests that it is secreted via the Tat secretory system in complex with DdhB, whereas DdhC is probably secreted via a Sec-dependent mechanism. Analysis of a ddhA mutant showed that dimethyl sulphide dehydrogenase was essential for photolithotrophic growth of Rv. sulfidophilum on dimethyl sulphide but not for chemo-trophic growth on the same substrate. Mutational analysis showed that cytochrome c (2) mediated photosynthetic electron transfer from dimethyl sulphide dehydrogenase to the photochemical reaction centre, although this cytochrome was not essential for photoheterotrophic growth of the bacterium.
Resumo:
Dimethyl sulfide dehydrogenase from the purple phototrophic bacterium Rhodovulum sulfidophilum catalyzes the oxidation of dimethyl sulfide to dimethyl sulfoxide. Recent DNA sequence analysis of the ddh operon, encoding dimethyl sulfide dehydrogenase (ddhABC), and biochemical analysis (1) have revealed that it is a member of the DMSO reductase family of molybdenum enzymes and is closely related to respiratory nitrate reductase (NarGHI). Variable temperature X-band EPR spectra (120122 K) of purified heterotrimeric dimethyl sulfide dehydrogenase showed resonances arising from multiple redox centers, Mo(V), [3Fe-4S](+), [4Fe-4S](+), and a b-type heme. A pH-dependent EPR study of the Mo(V) center in (H2O)-H-1 and (H2O)-H-2 revealed the presence of three Mo(V) species in equilibrium, Mo(V)-OH2, Mo(v)-anion, and Mo(V)-OH. Above pH 8.2 the dominant species was Mo(V)-OH. The maximum specific activity occurred at pH 9.27. Comparison of the rhombicity and anisotropy parameters for the Mo(V) species in DMS dehydrogenase with other molybdenum enzymes of the DMSO reductase family showed that it was most similar to the low-pH nitrite spectrum of Escherichia coli nitrate reductase (NarGHI), consistent with previous sequence analysis of DdhA and NarG. A sequence comparison of DdhB and NarH has predicted the presence of four [Fe-S] clusters in DdhB. A [3Fe-4S](+) cluster was identified in dimethyl sulfide dehydrogenase whose properties resembled those of center 2 of NarH. A [4Fe-4S](+) cluster was also identified with unusual spin Hamiltonian parameters, suggesting that one of the iron atoms may have a fifth non-sulfur ligand. The g matrix for this cluster is very similar to that found for the minor conformation of center 1 in NarH [Guigliarelli, B., Asso, M., More, C., Augher, V., Blasco, F., Pommier, J., Giodano, G., and Bertrand, P. (1992) Eur. J. Biochem. 307,63-68]. Analysis of a ddhC mutant showed that this gene encodes the b-type cytochrome in dimethyl sulfide dehydrogenase. Magnetic circular dichroism studies revealed that the axial ligands to the iron in this cytochrome are a histidine and methionine, consistent with predictions from protein sequence analysis. Redox potentiometry showed that the b-type cytochrome has a high midpoint redox potential (E-o = +315 mV, pH 8).
Resumo:
Mutations in the E1alpha subunit of the pyruvate dehydrogenase multienzyme complex may result in congenital lactic acidosis, but little is known about the consequences of these mutations at the enzymatic level. Here we characterize two mutants (F205L and T231A) of human pyruvate dehydrogenase in vitro, using the enzyme expressed in Escherichia coli. Wild-type and mutant proteins were purified successfully and their kinetic parameters were measured. F205L shows impaired binding of the thiamin diphosphate cofactor, which may explain why patients carrying this mutation respond to high-dose vitamin B-1 therapy. T231A has very low activity and a greatly elevated K-m for pyruvate, and this combination of effects would be expected to result in severe lactic acidosis. The results lead to a better understanding of the consequences of these mutations on the functional and structural properties of the enzyme, which may lead to improved therapies for patients carrying these mutations.
Resumo:
Sulfite dehydrogenase from Starkeya novella is an alphabeta heterodimer comprising a 40.6 kDa subunit (containing the Mo cofactor) and a smaller 8.8 kDa heme c subunit. The enzyme catalyses the oxidation of sulfite to sulfate with the natural electron acceptor being cytochrome c(550). Its catalytic mechanism is thought to resemble that found in eukaryotic sulfite oxiclases. Using protein film voltammetry and redox potentiometry, we have identified both Mo- and heme-centered redox responses from the enzyme immobilized on a pyrolytic graphite working electrode: E-m,E-8 (Fe-III/II) +177 mV; E-m,E-8 (Mo-VI/V) +211 mV and E(m,)8 (Mo-V/IV) -118 mV vs NHE; Upon addition of sulfite to the electrochemical cell a steady-state voltammogram is observed and an apparent Michaelis constant (K-m) of 26(l) muM was determined for the enzyme immobilized on the working electrode surface, which is comparable with the value obtained from solution assays.
Resumo:
Sulfite dehydrogenase (SDH) from Starkeya novella, a sulfite-oxidizing molybdenum-containing enzyme, has a novel tightly bound αβ-heterodimeric structure in which the Mo cofactor and the c-type heme are located on different subunits. Flash photolysis studies of intramolecular electron transfer (IET) in SDH show that the process is first-order, independent of solution viscosity, and not inhibited by sulfate, which strongly indicates that IET in SDH proceeds directly through the protein medium and does not involve substantial movement of the two subunits relative to each other. The IET results for SDH contrast with those for chicken and human sulfite oxidase (SO) in which the molybdenum domain is linked to a b-type heme domain through a flexible loop, and IET shows a remarkable dependence on sulfate concentration and viscosity that has been ascribed to interdomain docking. The results for SDH provide additional support for the interdomain docking hypothesis in animal SO and clearly demonstrate that dependence of IET on viscosity and sulfate is not an inherent property of all sulfite-oxidizing molybdenum enzymes.
Resumo:
Xanthine dehydrogenase (XDH) from the bacterium Rhodobacter capsulatus catalyzes the hydroxylation of xanthine to uric acid with NAD(+) as the electron acceptor. R. capsulatus XDH forms an (alphabeta)(2) heterotetramer and is highly homologous to homodimeric eukaryotic XDHs. The crystal structures of bovine XDH and R. capsulatus XDH showed that the two proteins have highly similar folds; however, R. capsulatus XDH is at least 5 times more active than bovine XDH and, unlike mammalian XDH, does not undergo the conversion to the oxidase form. Here we demonstrate electrocatalytic activity of the recombinant enzyme, expressed in Escherichia coli, while immobilized on an edge plane pyrolytic graphite working electrode. Furthermore, we have determined all redox potentials of the four cofactors (Mo-VI/V, Mo-V/IV, FAD/FADH, FADH/FADH(2) and two distinct [2Fe-2S](2+/+) clusters) using a combination of potentiometric and voltammetric methods. A novel feature identified in catalytic voltammetry of XDH concerns the potential for the onset of catalysis (ca. 400 mV), which is at least 600 mV more positive than that of the highest potential cofactor. This unusual observation is explained on the basis of a pterin-associated oxidative switch during voltammetry that precedes catalysis.
Resumo:
The metabolic conjugation of exogenous and endogenous carboxylic acid substrates with endogenous glucuronic acid, mediated by the uridine diphosphoglucuronosyl transferase (UGT) superfamily of enzymes, leads to the formation of acyl glucuronide metabolites. Since the late 1970s, acyl glucuronides have been increasingly identified as reactive electrophilic metabolites, capable of undergoing three reactions: intramolecular rearrangement, hydrolysis, and intermolecular reactions with proteins leading to covalent drug-protein adducts. This essential dogma has been accepted for over a decade. The key question proposed by researchers, and now the pharmaceutical industry, is: does or can the covalent modification of endogenous proteins, mediated by reactive acyl glucuronide metabolites, lead to adverse drug reactions, perhaps idiosyncratic in nature? This review evaluates the evidence for acyl glucuronide-derived perturbation of homeostasis, particularly that which might result from the covalent modification of endogenous proteins and other macromolecules. Because of the availability of acyl glucuronides for test tube/in vitro experiments, there is now a substantial literature documenting their rearrangement, hydrolysis and covalent modification of proteins in vitro. It is certain from in vitro experiments that serum albumin, dipeptidyl peptidase IV, tubulin and UGTs are covalently modified by acyl glucuronides. However, these in vitro experiments have been specifically designed to amplify any interference with a biological process in order to find biological effects. The in vivo situation is not at all clear. Certainly it must be concluded that all humans taking carboxylate drugs that form reactive acyl glucuronides will form covalent drug-protein adducts, and it must also be concluded that this in itself is normally benign. However, there is enough in vivo evidence implicating acyl glucuronides, which, when backed up by in vivo circumstantial and documented in vitro evidence, supports the view that reactive acyl glucuronides may initiate toxicity/immune responses. In summary, though acyl glucuronide-derived covalent modification of endogenous macromolecules is well-defined, the work ahead needs to provide detailed links between such modification and its possible biological consequences. (C) 2003 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
In the present study, we tested the hypothesis that walking intolerance in intermittent claudication (IC) is related to both slowed whole body oxygen uptake (Vo(2)) kinetics and altered activity of the active fraction of the pyruvate dehydrogenase complex (PDCa) in skeletal muscle. Ten patients with IC and peripheral arterial disease [ankle/brachial index (ABI) = 0.73 +/- 0.13] and eight healthy controls (ABI = 1. 17 +/- 0.13) completed three maximal walking tests. From these tests, averaged estimates of walking time, peak Vo(2) and the time constant of Vo(2) (tau) during submaximal walking were obtained. A muscle sample was taken from the gastrocnemius medialis muscle at rest and analysed for PDCa and several other biochemical variables. Walking time and peak Vo(2) were approx. 50 % lower in patients with IC than controls, and tau was 2-fold higher (P < 0.05). r was significantly correlated with walking time (r = -0.72) and peak Vo(2) (r = -0.66) in patients with IC, but not in controls. PDCa was not significantly lower in patients with IC than controls; however, PDCa tended to be correlated with tau (r = -0.56, P = 0.09) in patients with IC, but not in controls (r = -0.14). A similar correlation was observed between resting ABI and tau (r = -0.63, P = 0.05) in patients with IC. These data suggest that the impaired Vo(2) kinetics contributes to walking intolerance in IC and that, within a group of patients with IC, differences in Vo(2) kinetics might be partly linked to differences in muscle carbohydrate oxidation.
Resumo:
Crystals of purified heterodimeric sulfite dehydrogenase from Starkeya novella have been grown using vapour diffusion. X-ray diffraction data have been collected from crystals of the native protein at lambda=1.0 Angstrom and close to the iron absorption edge at lambda=1.737 Angstrom. The crystals belong to space group P2(1)2(1)2, with unit-cell parameters a=97.5, b=92.5, c=55.9 Angstrom. Native data have been recorded to 1.8 Angstrom resolution and Fe-edge data to 2.5 Angstrom.
Resumo:
In the present study we identify inosine-5' monophosphate dehydrogenase (IMPDH), a key enzyme in de novo guanine nucleotide biosynthesis, as a novel lipid body-associated protein. To identify new targets of insulin we performed a comprehensive 2-DE analysis of P-32-labelled proteins isolated from 3T3-L1 adipocytes (Hill et al. J Biol Chem 2000; 275: 24313-24320). IMPDH was identified by liquid chromatography/tandem mass spectrometry as a protein which was phosphorylated in a phosphatidylinositol (PI) 3-kinase-dependent manner upon insulin treatment. Although insulin had no significant effect on IMPDH activity, we observed translocation of IMPDH to lipid bodies following insulin treatment. Induction of lipid body formation with oleic acid promoted dramatic redistribution of IMPDH to lipid bodies, which appeared to be in contact with the endoplasmic reticulum, the site of lipid body synthesis and recycling. Inhibition of PI 3-kinase blocked insulin- and oleate-induced translocation of IMPDH and reduced oleate-induced lipid accumulation. However, we found no evidence of oleate-induced IMPDH phosphorylation, suggesting phosphorylation and translocation may not be coupled events. These data support a role for IMPDH in the dynamic regulation of lipid bodies and fatty acid metabolism and regulation of its activity by subcellular redistribution in response to extracellular factors that modify lipid metabolism.
Resumo:
A double-site enzyme-linked lactate dehydrogenase enzyme inummodetection assay was tested against field isolates of Plasmodium falciparum for assessing in vitro drug susceptibilities to a wide range of antimalarial drugs. Its sensitivity allowed the use of parasite densities as low as 200 parasites/mul of blood. Being a nonisotopic, colorimetric assay, it lies within the capabilities of a modest laboratory at the district level.
Resumo:
Glutamate dehydrogenase (GDH; EC 1.4.1.2-1.4.1.4) catalyses in vitro the reversible amination of 2-oxoglutarate to glutamate. In vascular plants the in vivo direction(s) of the GDH reaction and hence the physiological role(s) of this enzyme remain obscure. A phylogenetic analysis identified two clearly separated groups of higher-plant GDH genes encoding either the alpha- or beta-subunit of the GDH holoenzyme. To help clarify the physiological role(s) of GDH, tobacco (Nicotiana tabacum L.) was transformed with either an antisense or sense copy of a beta-subunit gene, and transgenic plants recovered with between 0.5- and 34-times normal leaf GDH activity. This large modulation of GDH activity (shown to be via alteration of beta-subunit levels) had little effect on leaf ammonium or the leaf free amino acid pool, except that a large increase in GDH activity was associated with a significant decrease in leaf Asp (similar to 51%, P=0.0045). Similarly, plant growth and development were not affected, suggesting that a large modulation of GDH beta-subunit titre does not affect plant viability under the ideal growing conditions employed. Reduction of GDH activity and protein levels in an antisense line was associated with a large increase in transcripts of a beta-subunit gene, suggesting that the reduction in beta-subunit levels might have been due to translational inhibition. In another experiment designed to detect post-translational up-regulation of GDH activity, GDH over-expressing plants were subjected to prolonged dark-stress. GDH activity increased, but this was found to be due more likely to resistance of the GDH protein to stress-induced proteolysis, rather than to post-translational up-regulation.
Resumo:
The Curtius rearrangement is a synthesis of isocyanates (R-N=C=O) by thermal or photochemical rearrangement of acyl acides and/or acylnitrenes. The photochemical rearrangement of benzoyl azide is now shown for the first time to produce a small amount of phenyl cyanate (Ph-O-CN) together with phenyl isocyanate.