87 resultados para 3D Sequential Imaging
Resumo:
Left ventricular (LV) volumes have important prognostic implications in patients with chronic ischemic heart disease. We sought to examine the accuracy and reproducibility of real-time 3D echo (RT-3DE) compared to TI-201 single photon emission computed tomography (SPECT) and cardiac magnetic resonance imaging (MRI). Thirty (n = 30) patients (age 62±9 years, 23 men) with chronic ischemic heart disease underwent LV volume assessment with RT-3DE, SPECT, and MRI. Ano vel semi-automated border detection algorithmwas used by RT-3DE. End diastolic volumes (EDV) and end systolic volumes (ESV) measured by RT3DE and SPECT were compared to MRI as the standard of reference. RT-3DE and SPECT volumes showed excellent correlation with MRI (Table). Both RT- 3DE and SPECT underestimated LV volumes compared to MRI (ESV, SPECT 74±58 ml versus RT-3DE 95±48 ml versus MRI 96±54 ml); (EDV, SPECT 121±61 ml versus RT-3DE 169±61 ml versus MRI 179±56 ml). The degree of ESV underestimation with RT-3DE was not significant.
Resumo:
Deformable models are a highly accurate and flexible approach to segmenting structures in medical images. The primary drawback of deformable models is that they are sensitive to initialisation, with accurate and robust results often requiring initialisation close to the true object in the image. Automatically obtaining a good initialisation is problematic for many structures in the body. The cartilages of the knee are a thin elastic material that cover the ends of the bone, absorbing shock and allowing smooth movement. The degeneration of these cartilages characterize the progression of osteoarthritis. The state of the art in the segmentation of the cartilage are 2D semi-automated algorithms. These algorithms require significant time and supervison by a clinical expert, so the development of an automatic segmentation algorithm for the cartilages is an important clinical goal. In this paper we present an approach towards this goal that allows us to automatically providing a good initialisation for deformable models of the patella cartilage, by utilising the strong spatial relationship of the cartilage to the underlying bone.
Resumo:
The use of 3D visualisation of digital information is a recent phenomenon. It relies on users understanding 3D perspectival spaces. Questions about the universal access of such spaces has been debated since its inception in the European Renaissance. Perspective has since become a strong cultural influence in Western visual communication. Perspective imaging assists the process of experimenting by the sketching or modelling of ideas. In particular, the recent 3D modelling of an essentially non-dimensional Cyber-space raises questions of how we think about information in general. While alternate methods clearly exist they are rarely explored within the 3D paradigm (such as Chinese isometry). This paper seeks to generate further discussion on the historical background of perspective and its role in underpinning this emergent field. © 2005 IEEE.
Resumo:
This paper presents the creation of 3D statistical shape models of the knee bones and their use to embed information into a segmentation system for MRIs of the knee. We propose utilising the strong spatial relationship between the cartilages and the bones in the knee by embedding this information into the created models. This information can then be used to automate the initialisation of segmentation algorithms for the cartilages. The approach used to automatically generate the 3D statistical shape models of the bones is based on the point distribution model optimisation framework of Davies. Our implementation of this scheme uses a parameterized surface extraction algorithm, which is used as the basis for the optimisation scheme that automatically creates the 3D statistical shape models. The current approach is illustrated by generating 3D statistical shape models of the patella, tibia and femoral bones from a segmented database of the knee. The use of these models to embed spatial relationship information to aid in the automation of segmentation algorithms for the cartilages is then illustrated.
Resumo:
This paper presents an automated segmentation approach for MR images of the knee bones. The bones are the first stage of a segmentation system for the knee, primarily aimed at the automated segmentation of the cartilages. The segmentation is performed using 3D active shape models (ASM), which are initialized using an affine registration to an atlas. The 3D ASMs of the bones are created automatically using a point distribution model optimization scheme. The accuracy and robustness of the segmentation approach was experimentally validated using an MR database of fat suppressed spoiled gradient recall images.
Resumo:
This article describes a method to turn astronomical imaging into a random number generator by using the positions of incident cosmic rays and hot pixels to generate bit streams. We subject the resultant bit streams to a battery of standard benchmark statistical tests for randomness and show that these bit streams are statistically the same as a perfect random bit stream. Strategies for improving and building upon this method are outlined.
Resumo:
Cerebral responses to alternating periods of a control task and a selective letter generation paradigm were investigated with functional Magnetic Resonance Imaging (fMRI). Subjects selectively generated letters from four designated sets of six letters from the English language alphabet, with the instruction that they were not to produce letters in alphabetical order either forward or backward, repeat or alternate letters. Performance during this condition was compared with that of a control condition in which subjects recited the same letters in alphabetical order. Analyses revealed significant and extensive foci of activation in a number of cerebral regions including mid-dorsolateral frontal cortex, inferior frontal gyrus, precuneus, supramarginal gyrus, and cerebellum during the selective letter generation condition. These findings are discussed with respect to recent positron emission tomography (PET) and fMRI studies of verbal working memory and encoding/retrieval in episodic memory.
Resumo:
In an investigation intended to determine training needs of night crews, Bowers et al. (1998, this issue) report two studies showing that the patterning of communication is a better discriminator of good and poor crews than is the content of communication. Bowers et al. characterize their studies as intended to generate hypotheses for training needs and draw connections with Exploratory Sequential Data Analysis (ESDA). Although applauding the intentions of Bowers ct al., we point out some concerns with their characterization and implementation of ESDA. Our principal concern is that the Bowers et al. exploration of the data does not convincingly lead them back to a better fundamental understanding of the original phenomena they are investigating.
Resumo:
Magnetic resonance imaging (MRI) was used to evaluate and compare with anthropometry a fundamental bioelectrical impedance analysis (BIA) method for predicting muscle and adipose tissue composition in the lower limb. Healthy volunteers (eight men and eight women), aged 41 to 62 years, with mean (S.D.) body mass indices of 28.6 (5.4) kg/m(2) and 25.1 (5.4) kg/m(2) respectively, were subjected to MRI leg scans, from which 20-cm sections of thigh and IO-cm sections of lower leg (calf) were analysed for muscle and adipose tissue content, using specifically developed software. Muscle and adipose tissue were also predicted from anthropometric measurements of circumferences and skinfold thicknesses, and by use of fundamental BIA equations involving section impedance at 50 kHz and tissue-specific resistivities. Anthropometric assessments of circumferences, cross-sectional areas and volumes for total constituent tissues matched closely MRI estimates. Muscle volume was substantially overestimated (bias: thigh, -40%; calf, -18%) and adipose tissue underestimated (bias: thigh, 43%; calf, 8%) by anthropometry, in contrast to generally better predictions by the fundamental BIA approach for muscle (bias:thigh, -12%; calf, 5%) and adipose tissue (bias:thigh, 17%; calf, -28%). However, both methods demonstrated considerable individual variability (95% limits of agreement 20-77%). In general, there was similar reproducibility for anthropometric and fundamental BIA methods in the thigh (inter-observer residual coefficient of variation for muscle 3.5% versus 3.8%), but the latter was better in the calf (inter-observer residual coefficient of variation for muscle 8.2% versus 4.5%). This study suggests that the fundamental BIA method has advantages over anthropometry for measuring lower limb tissue composition in healthy individuals.
Resumo:
Imaging of the head and neck is the most commonly performed clinical magnetic resonance imaging (MRI) examination [R. G. Evans and J. R. G. Evans, AJR 157, 603 (1991)]. This is usually undertaken in a generalist MRI instrument containing superconducting magnet system capable of imaging all organs. These generalist instruments are large, typically having a bore of 0.9-1.0 m and a length of 1.7-2.5 m and therefore are expensive to site, somewhat claustrophobic to the patient, and offer little access by attending physicians. In this article, we present the design of a compact, superconducting MRI magnet for head and neck imaging that is less than 0.8 m in length and discuss in detail the design of an asymmetric gradient coil set, tailored to the magnet profile. In particular, the introduction of a radio-frequency FM modulation scheme in concert with a gradient sequence allows the epoch of the linear region of the gradient set to be much closer to the end of the gradient structure than was previously possible. Images from a prototype gradient set demonstrate the effectiveness of the designs. (C) 1999 American Institute of Physics. [S0034-6748(99)04910-2].
Resumo:
We demonstrate a three-dimensional scanning probe microscope in which the extremely soft spring of an optical tweezers trap is used. Feedback control of the instrument based on backscattered light levels allows three-dimensional imaging of microscopic samples in an aqueous environment. Preliminary results with a 2-mu m-diameter spherical probe indicate that features of approximately 200 nm can be resolved, with a sensitivity of 5 nm in the height measurement. The theoretical resolution is limited by the probe dimensions. (C) 1999 Optical Society of America.
Resumo:
OBJECTIVE: To use magnetic resonance imaging (MRI) to validate estimates of muscle and adipose tissue (AT) in lower limb sections obtained by dual-energy X-ray absorptiometry (DXA) modelling. DESIGN: MRI measurements were used as reference for validating limb muscle and AT estimates obtained by DXA models that assume fat-free soft tissue (FFST) comprised mainly muscle: model A accounted for bone hydration only; model B also applied constants for FFST in bone and skin and fat in muscle and AT; model C was as model B but allowing for variable fat in muscle and AT. SUBJECTS: Healthy men (n = 8) and women (n = 8), ages 41 - 62 y; mean (s.d.) body mass indices (BMIs) of 28.6 (5.4) kg/m(2) and 25.1 (5.4) kg/m2, respectively. MEASUREMENTS: MRI scans of the legs and whole body DXA scans were analysed for muscle and AT content of thigh (20 cm) and lower leg (10 cm) sections; 24 h creatinine excretion was measured. RESULTS: Model A overestimated thigh muscle volume (MRI mean, 2.3 l) substantially (bias 0.36 l), whereas model B underestimated it by only 2% (bias 0.045 l). Lower leg muscle (MRI mean, 0.6 l) was better predicted using model A (bias 0.04 l, 7% overestimate) than model B (bias 0.1 l, 17% underestimate). The 95% limits of agreement were high for these models (thigh,+/- 20%; lower leg,+/- 47%). Model C predictions were more discrepant than those of model B. There was generally less agreement between MRI and all DXA models for AT. Measurement variability was generally less for DXA measurements of FFST (coefficient of variation 0.7 - 1.8%) and fat (0.8 - 3.3%) than model B estimates of muscle (0.5-2.6%) and AT (3.3 - 6.8%), respectively. Despite strong relationships between them, muscle mass was overestimated by creatinine excretion with highly variable predictability. CONCLUSION: This study has shown the value of DXA models for assessment of muscle and AT in leg sections, but suggests the need to re-evaluate some of the assumptions upon which they are based.