25 resultados para 090602 Control Systems Robotics and Automation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the implementation of a modified particle filter for vision-based simultaneous localization and mapping of an autonomous robot in a structured indoor environment. Through this method, artificial landmarks such as multi-coloured cylinders can be tracked with a camera mounted on the robot, and the position of the robot can be estimated at the same time. Experimental results in simulation and in real environments show that this approach has advantages over the extended Kalman filter with ambiguous data association and various levels of odometric noise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Because organizations are making large investments in Information systems (IS), efficient IS project management has been found critical to success. This study examines how the use of incentives can improve the project success. Agency theory is used to: identify motivational factors of project success, help the IS owners to understand to what extent management incentives can improve IS development and implementation (ISD/I). The outcomes will help practitioners and researchers to build on theoretical model of project management elements which lead to project success. Given the principal-agent nature of most significant scale of IS development, insights that will allow for greater alignment of the agent’s goals with those of the principal through incentive contracts, will serve to make ISD/I both more efficient and more effective, leading to more successful IS projects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recovering position from sensor information is an important problem in mobile robotics, known as localisation. Localisation requires a map or some other description of the environment to provide the robot with a context to interpret sensor data. The mobile robot system under discussion is using an artificial neural representation of position. Building a geometrical map of the environment with a single camera and artificial neural networks is difficult. Instead it would be simpler to learn position as a function of the visual input. Usually when learning images, an intermediate representation is employed. An appropriate starting point for biologically plausible image representation is the complex cells of the visual cortex, which have invariance properties that appear useful for localisation. The effectiveness for localisation of two different complex cell models are evaluated. Finally the ability of a simple neural network with single shot learning to recognise these representations and localise a robot is examined.