776 resultados para chemical sciences observatory
Resumo:
The radicals formed on gamma-radiolysis of a series of copolymers of methacrylic acid and acrylonitrile have been investigated by ESR spectroscopy. This series of copolymers spanned the full composition range and the study was carried out at 77 K and ambient temperature. The radicals formed in the copolymers at 77 and 303 K were found to be similar to those found in the two homopolymers, but in the intermediate composition range the presence of acrylonitrile propagation radicals was also detected. These radicals were not observed to be formed in significant quantities on the radiolysis of polyacrylonitrile. They are believed to result from a scission of the main chain at methacrylic acid/acrylonitrile diad sequences following loss of the methacrylic acid carboxyl group. At 77 K, the copolymers with high methacrylic acid contents were found to be more sensitive to radical formation than the methacrylic acid homopolymer, but this enhanced sensitivity was not evident at ambient temperature, where the G-values for radical formation for the copolymers were slightly less than the values for the homopolymers. (C) 2003 Society of Chemical Industry.
Resumo:
The kinetics of chain reactions of octanedithiol with styrene, thermally initiated with TX29B50 (a 50:50 wt% solution of TX29 diperoxy initiator in a phthalate plasticizer), have been studied over a range of initiator concentrations, a range of mixture formulations and a range of temperatures. This system has been investigated as a model system for the reactions of polyfunctional thiols with divinyl benzene. The reactions have been shown to follow first-order kinetics for both the thiol and the ene species and to be characterized by a dependence on the initiator concentration to the power of one half. The kinetic rate parameters have been shown to adhere to Arrhenius behaviour. A kinetic model for the chain reactions for this system has been proposed. (C) 2003 Society of Chemical Industry.
Resumo:
The effects of copolymer composition and microstructure on the radiation chemistry of styrene/alkane and alpha-methylstyrene/alkane copolymers have been studied. The primary radical species formed on radiolysis of the copolymers at 77 K, and identified by ESR spectroscopy, are the same as those formed during radiolysis of the homopolymers. The yields of radicals for the copolymer are as predicted assuming that the cross-section is proportional to the electron density of each component; however, there is some evidence of radical migration to aromatic groups at 77 K. Changes in molecular structure on irradiation were detected by using C-13 NMR spectroscopy. Evidence of the consumption of terminal double bonds, and chain scission in alpha-methylstyrene/alkane copolymers was found. Measurements of viscosity supported the mechanism of cross-linking predominating in styrene/alkane copolymers, while in alpha-methylstyrene/alkane copolymers chain scission was the major result of irradiation. (C) 2003 Society of Chemical Industry.
Resumo:
Low-temperature (15 K) single-crystal neutron-diffraction structures and Raman spectra of the salts (NX4)(2)[CU(OX2)(6)](SO4)(2), where X = H or D, are reported. This study is concerned with the origin of the structural phase change that is known to occur upon deuteration. Data for the deuterated salt were measured in the metastable state, achieved by application of 500 bar of hydrostatic pressure at similar to303 K followed by cooling to 281 K and the subsequent release of pressure. This allows for the direct comparison between the hydrogenous and deuterated salts, in the same modification, at ambient pressure and low temperature. The Raman spectra provide no intimation of any significant change in the intermolecular bonding. Furthermore, structural differences are few, the largest being for the long Cu-O bond, which is 2.2834(5) and 2.2802(4) Angstrom for the hydrogenous and the deuterated salts, respectively. Calorimetric data for the deuterated salt are also presented, providing an estimate of 0.17(2) kJ/mol for the enthalpy difference between the two structural forms at 295.8(5) K. The structural data suggest that substitution of hydrogen for deuterium gives rise to changes in the hydrogen-bonding interactions that result in a slightly reduced force field about the copper(II) center. The small structural differences suggest different relative stabilities for the hydrogenous and deuterated salts, which may be sufficient to stabilize the hydrogenous salt in the anomalous structural form.
Resumo:
Di-2-pyridyl ketone isonicotinoyl hydrazone (HPKIH) and a range of its analogues comprise a series of monobasic acids that are capable of binding iron (Fe) as tridentate (N,N,O) ligands. Recently, we have shown that these chelators are highly cytotoxic, but show selective activity against cancer cells. Particularly interesting was the fact that cytotoxicity of the HPKIH analogues is maintained even after complexation with Fe. To understand the potent anti-tumor activity of these compounds, we have fully characterized their chemical properties. This included examination of the solution chemistry and X-ray crystal structures of both the ligands and Fe complexes from this class and the ability of these complexes to mediate redox reactions. Potentiometric titrations demonstrated that all chelators are present predominantly in their charge-neutral form at physiological pH (7.4), allowing access across biological membranes. Keto-enol tautomerism of the ligands was identified, with the tautomers exhibiting distinctly different protonation constants. Interestingly, the chelators form low-spin (diamagnetic) divalent Fe complexes in solution. The chelators form distorted octahedral complexes with Fe-II, with two tridentate ligands arranged in a meridional fashion. Electrochemistry of the Fe complexes in both aqueous and non-aqueous solutions revealed that the complexes are oxidized to their ferric form at relatively high potentials, but this oxidation is coupled to a rapid reaction with water to form a hydrated (carbinolamine) derivative, leading to irreversible electrochemistry. The Fe complexes of the HPKIH analogues caused marked DNA degradation in the presence of hydrogen peroxide. This observation confirms that Fe complexes from the HPKIH series mediate Fenton chemistry and do not repel DNA. Collectively, studies on the solution chemistry and structure of these HPKIH analogues indicate that they can bind cellular Fe and enhance its redox activity, resulting in oxidative damage to vital biomolecules.
Resumo:
The ESR spectra of poly(chlorotrifluoroethylene) were recorded following gamma-radiolysis under vacuum at room temperature and 77 K. The very broad spectrum at 77 K revealed little fine structure with which to identity the radicals formed upon irradiation, but subsequent photobleaching and annealing studies, together with radiolytic studies at higher temperatures, afforded scope for making radical assignments. Both main-chain radicals and a range of chain-end radicals have been identified. The G-values for radical formation were 1.55, 0.36 and 0.32 at 77 K, 273 K and room temperature, respectively. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Iron chelators of the 2-pyridinecarbaldehyde isonicotinoylhydrazone (HPCIH) class show high potential for the treatment of iron overload diseases. In the present study, selected first-row transition metal (from Mn to Zn) complexes with HPCIH and 2-pyridinecarbaldehyde (4'-aminobenzoyl)hydrazone (HPCAH) were synthesised and characterised. Crystallography reveals that HPCAH exclusively forms bis complexes with divalent transition metals, with each ligand coordinating meridionally through its pyridine-N, imine-N and carbonyl-O atoms, forming distorted octahedral cis-MN4O2 complexes. Complexes of HPCIH were more varied and unpredictable, with metal/ligand ratios of 1:1, 1:2, 2:2 and 3:2 obtained with different metal ions. The isonicotinoyl ring N-atom in HPCIH was found to be an effective ligand, and this resulted in the varied metal/ligand ratios observed. The formation constants of divalent metal complexes with HPCIH were determined by potentiometric titrations and the values obtained were consistent with similar tridentate ligands and with the Irving-Williams order. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003).
Resumo:
The radiation chemical yields G(S) and G(X) for H-linking and Y-linking models for Ultem have been calculated from molecular weight analysis by gel permeation chromatography. These G-values have been compared with the G-values obtained from analysis of soluble fractions above the gel dose, Which have been reported in previous works. An analysis of the molecular weight data in terms of H-linking and Y-linking mechanisms yielded values of G(S-H) = 1.0 x 10(-3) and G(H) = 6.0 x 10(-3) and G(S-Y) = 1.3 x 10(-2) and G(Y) = 1.8 x 10(-2). The corresponding values obtained from the solubility data were G(SH) = 0.53 x 10(-2), G(H) = 1.39 x 10(-2), G(S-Y) = 4.2 x 10(-2) and G(Y) - 4.6 x 10(-2). The origin of the disagreement between the molecular weight and solubility values is not clear, but it could arise as a result of observed microgel formation below the reported gel dose of 0.13 MGy. Whether the crosslink mechanism proceeds by an H-linking or Y-linking process is also unclear and will require direct observation of the crosslinking structures.
Resumo:
Fluoropolymers are known as chemically inert materials with good high temperature resistance, so they are often the materials of choice for harsh chemical environments. These properties arise because the carbon-fluorine bond is the strongest of all bonds between other elements and carbon, and, because of their large size, fluorine atoms can protect the carbon backbone of polymers such as poly(tetrafluoroethylene), PTFE, from chemical attack. However, while the carbon-fluorine bond is much stronger than the carbon hydrogen bond, the G values for radical formation on high energy radiolysis of fluoropolymers are roughly comparable to those of their protonated counterparts. Thus, efficient high energy radiation grafting of fluoropolymers is practical, and this process can be used to modify either the surface or bulk properties of a fluoropolymer. Indeed, radiation grafted fluoropolymers are currently being used as separation membranes for fuel cells, hydrophilic filtration membranes and matrix substrate materials for use in combinatorial chemistry. Herein we present a review of recent studies of the high energy radiation grafting of fluoropolymers and of the analytical methods available to characterize the grafts. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The 93 K X-ray crystal structure of tris(ethane-1,2-diamine)zinc(II) dinitrate is reported. As predicted by the spectroscopic studies of other workers, there is a reversible phase transition of the structure at low temperature. We have determined this temperature to be 143 K. The structure at this temperature and below resembles that of the room temperature structure, except the crystallographic D-3 symmetry of the complex cation (296 K) is lowered to C-2 ( below 144 K) by subtle changes in cation-anion hydrogen bonding. No change in the conformation of the cation or its bond lengths and angles was found.
Resumo:
The potential applications of macrocycles in chemistry and at its interfaces with biology and physics continue to emerge, one of which is as receptors for small molecules and ions. This review illustrates these applications with examples from the last ten years employing complexation as the binding mechanism; some of the systems presented have already found real-world sensor applications. In any case, the challenges remain to design more selective and sensitive receptors for guests.
Resumo:
The major trans (1) and minor cis (2) isomers of 1,4,8,11-tetraazacyclotetradecane-6,13-dicarboxylate have been characterized as the complexes [Co(1)](ClO4) and [Co(H-2)(OH2)]Cl(ClO4).H2O. The former crystallized in the C-2/c space group and the latter in the P2(1)/c space group, with cell parameters a 16.258(7), b 9.050(3), c 15.413(6) Angstrom, beta133.29(3)degrees, and a 9.694(4), b 16.135(1), c 12.973(5) Angstrom, beta 93.00(2)degrees, respectively. Their characterization completes identification of the respective trans and cis isomers for the series of C-pendant macrocycles also including 1,4,8,11-tetraazacyclotetradecane-6-amine-13-carboxylate ((3), (4)) and 1,4,8,11-tetraazacyclotetradecane-6,13-diamine ((5), (6)). The complexes show limited distortion from octahedral geometry with the strain in the presence of the coordinated C-pendant carboxylate significantly reduced compared with that for the C-pendant amine in analogues, a consequence mainly of six-membered as opposed to five-membered chelate rings involving the pendant donor. A comparison of the physical properties for the trans isomers of the octahedral complexes of (1), (3), and (5), which reflect progressively increasing strain, is presented.
Resumo:
The outer-sphere redox behaviour of a series of [LnCoIII-NCFeII(CN)(5)](-) (L-n = n-membered pentadentate aza-macrocycle) complexes have been studied as a function of pH and oxidising agent. All the dinuclear complexes show a double protonation process at pH approximate to 2 that produces a shift in their UV/Vis spectra. Oxidation of the different non-protonated and diprotonated complexes has been carried out with peroxodisulfate, and of the non-protonated complexes also with trisoxalatocobaltate(III). The results are in agreement with predictions from the Marcus theory. The oxidation of [Fe(phen)(3)](3+) and [IrCl6](2-) is too fast to be measured, although for the latter the transient observation of the process has been achieved at pH = 0. The study of the kinetics of the outer-sphere redox process, with the S2O82- and [Co(ox)(3)](3-) oxidants, has been carried out as a function of pH, temperature, and pressure. As a whole, the values found for the activation volumes, entropies, and enthalpies are in the following margins, for the diprotonated and non-protonated dinuclear complexes, respectively: DeltaV(not equal) from 11 to 13 and 15 to 20 cm(3) mol(-1); DeltaS(not equal) from 110 to 30 and -60 to -90 J K-1 mol(-1); DeltaH(not equal) from 115 to 80 and 50 to 65 kJ.mol(-1). The thermal activation parameters are clearly dominated by the electrostriction occurring on outer-sphere precursor formation, while the trends found for the values of the volume of activation indicate an important degree of tuning due to the charge distribution during the electron transfer process. The special arrangement on the amine ligands in the isomer trans[(L14CoNCFeII)-N-III(CN)(5)](-) accounts for important differences in solvent-assisted hydrogen bonding occurring within the outer-sphere redox process, as has been established in redox reactions of similar compounds. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003).
Resumo:
Electrochemistry of bacterial cytochrome P450cin (CYP176A) reveals that, unusually, substrate binding does not affect the heme redox potential, although a marked pH dependence is consistent with a coupled single electron/single proton transfer reaction in the range 6 < pH < 10.
Resumo:
[GRAPHICS] Rapid access to the ABCE ring system of the C-20 diterpene alkaloids was achieved by silver(I)-promoted intramolecular Friedel-Crafts arylation of a functional group-specific 5-bromo-3-azabicyclo[3.3.1]nonane derivative.