229 resultados para High productivity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid formation and selection of FP (few polyhedra) mutants occurs during serial passaging of Helicoverpa armigera nucleopolyhedrovirus (HaSNPV) in insect cell culture. The production of HaSNPV for use as biopesticides requires the passaging of the virus over a number of passages to produce enough virus inoculum for large-scale fermentation. During serial passaging in cell culture, FP mutants were rapidly selected, resulting in declined productivity and reduced potency of virus. Budded virus (BV) is usually harvested between 72 and 96 h postinfection (hpi) in order to obtain a high titer virus stock. In this study, the effect of tine of harvest (TOH) for BV on the selection rate of HaSNPV FP mutants during serial passaging was investigated. BV were harvested at different times postinfection, and each series was serially passaged for six passages. The productivity and percentage of FP mutants at each passage were determined. It was found that the selection of FP mutants can he reduced by employing an earlier TOH for BV. Serial passaging with BV harvested at 48 hpi showed a slower accumulation of FP mutants compared to that of BV harvested after 48 hpi. Higher cell specific yields were also maintained when BV were harvested at 48 hpi. When BV that were formed between 48 and 96 hpi were harvested and serially passaged, FP mutants quickly dominated the virus population. This suggests that the V formed and released between 48 and 96 hpi are most likely from FP mutant infected cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functional knowledge of the physiological basis of crop adaptation to stress is a prerequisite for exploiting specific adaptation to stress environments in breeding programs. This paper presents an analysis of yield components for pearl millet, to explain the specific adaptation of local landraces to stress environments in Rajasthan, India. Six genotypes, ranging from high-tillering traditional landraces to low-tillering open-pollinated modern cultivars, were grown in 20 experiments, covering a range of nonstress and drought stress patterns. In each experiment, yield components (particle number, grain number, 100 grain mass) were measured separately for main shoots, basal tillers, and nodal tillers. Under optimum conditions, landraces had a significantly lower grain yield than the cultivars, but no significant differences were observed at yield levels around 1 ton ha(-1). This genotype x environment interaction for grain yield was due to a difference in yield strategy, where landraces aimed at minimising the risk of a crop failure under stress conditions, and modem cultivars aimed at maximising yield potential under optimum conditions. A key aspect of the adaptation of landraces was the small size of the main shoot panicle, as it minimised (1) the loss of productive tillers during stem elongation; (2) the delay in anthesis if mid-season drought occurs; and (3) the reduction in panicle productivity of the basal tillers under stress. In addition, a low investment in structural panicle weight, relative to vegetative crop growth rate, promoted the production of nodal tillers, providing a mechanism to compensate for reduced basal tiller productivity if stress occurred around anthesis. A low maximum 100 grain mass also ensured individual grain mass was little affected by environmental conditions. The strategy of the high-tillering landraces carries a yield penalty under optimum conditions, but is expected to minimise the risk of a crop failure, particularly if mid-season drought stress occurs. The yield architecture of low-tillering varieties, by contrast, will be suited to end-of-season drought stress, provided anthesis is early. Application of the above adaptation mechanisms into a breeding program could enable the identification of plant types that match the prevalent stress patterns in the target environments. (C) 2003 E.J. van Oosterom. Published by Elsevier Science B.V. All rights reserved.