223 resultados para multiple locus sequence typing
Resumo:
A general overview of the protein sequence set for the mouse transcriptome produced during the FANTOM2 sequencing project is presented here. We applied different algorithms to characterize protein sequences derived from a nonredundant representative protein set (RPS) and a variant protein set (VPS) of the mouse transcriptome. The functional characterization and assignment of Gene Ontology terms was done by analysis of the proteome using InterPro. The Superfamily database analyses gave a detailed structural classification according to SCOP and provide additional evidence for the functional characterization of the proteome data. The MDS database analysis revealed new domains which are not presented in existing protein domain databases. Thus the transcriptome gives us a unique source of data for the detection of new functional groups. The data obtained for the RPS and VPS sets facilitated the comparison of different patterns of protein expression. A comparison of other existing mouse and human protein sequence sets (e.g., the International Protein Index) demonstrates the common patterns in mammalian proteornes. The analysis of the membrane organization within the transcriptome of multiple eukaryotes provides valuable statistics about the distribution of secretory and transmembrane proteins
Resumo:
Plasma levels of lipoprotein(a) _ Lp(a) _ are associated with cardiovascular risk (Danesh et al., 2000) and were long believed to be influenced by the LPA locus on chromosome 6q27 only. However, a recent report of Broeckel et al. (2002) suggested the presence of a second quantitative trait locus on chromosome 1 influencing Lp(a) levels. Using a two-locus model, we found no evidence for an additional Lp(a) locus on chromosome 1 in a linkage study among 483 dizygotic twin pairs.
Resumo:
Background Estimates of the disease burden due to multiple risk factors can show the potential gain from combined preventive measures. But few such investigations have been attempted, and none on a global scale. Our aim was to estimate the potential health benefits from removal of multiple major risk factors. Methods We assessed the burden of disease and injury attributable to the joint effects of 20 selected leading risk factors in 14 epidemiological subregions of the world. We estimated population attributable fractions, defined as the proportional reduction in disease or mortality that would occur if exposure to a risk factor were reduced to an alternative level, from data for risk factor prevalence and hazard size. For every disease, we estimated joint population attributable fractions, for multiple risk factors, by age and sex, from the direct contributions of individual risk factors. To obtain the direct hazards, we reviewed publications and re-analysed cohort data to account for that part of hazard that is mediated through other risks. Results Globally, an estimated 47% of premature deaths and 39% of total disease burden in 2000 resulted from the joint effects of the risk factors considered. These risks caused a substantial proportion of important diseases, including diarrhoea (92%-94%), lower respiratory infections (55-62%), lung cancer (72%), chronic obstructive pulmonary disease (60%), ischaemic heart disease (83-89%), and stroke (70-76%). Removal of these risks would have increased global healthy life expectancy by 9.3 years (17%) ranging from 4.4 years (6%) in the developed countries of the western Pacific to 16.1 years (43%) in parts of sub-Saharan Africa. Interpretation Removal of major risk factors would not only increase healthy life expectancy in every region, but also reduce some of the differences between regions, The potential for disease prevention and health gain from tackling major known risks simultaneously would be substantial.
Resumo:
We report the development of epitope-blocking enzyme-linked immunosorbent assays (ELISAs) for the rapid detection of serum antibodies to West Nile virus (WNV) in taxonomically diverse North American avian species. A panel of flavivirus-specific monoclonal antibodies (MAbs) was tested in blocking assays with serum samples from WNV-infected chickens and crows. Selected MAbs were further tested against serum samples from birds that represented 16 species and 10 families. Serum samples were collected from birds infected with WW or Saint Louis encephalitis virus (SLEV) and from noninfected control birds. Serum samples from SLEV-infected birds were included in these experiments because WNV and SLEV are closely related antigenically, are maintained in similar transmission cycles, and have overlapping geographic distributions. The ELISA that utilized MAb 3.11126 potentially discriminated between WW and SLEV infections, as all serum samples from WNV-infected birds and none from SLEV-infected birds were positive in this assay. Assays with MAbs 2132 and 6B6C-1 readily detected serum antibodies in all birds infected with WNV and SLEV, respectively, and in most birds infected with the other virus. Two other MAbs partially discriminated between infections with these two viruses. Serum samples from most WNV-infected birds but no SLEV-infected birds were positive with MAb 3.676, while almost all serum samples from SLEV-infected birds but few from WNV-infected birds were positive with MAb 6B5A-5. The blocking assays reported here provide a rapid, reliable, and inexpensive diagnostic and surveillance technique to monitor WNV activity in multiple avian species.
Resumo:
The genetic basis of cardiovascular disease (CVD) with its complex etiology is still largely elusive. Plasma levels of lipids and apolipoproteins are among the major quantitative risk factors for CVD and are well-established intermediate traits that may be more accessible to genetic dissection than clinical CVD end points. Chromosome 19 harbors multiple genes that have been suggested to play a role in lipid metabolism and previous studies indicated the presence of a quantitative trait locus (QTL) for cholesterol levels in genetic isolates. To establish the relevance of genetic variation at chromosome 19 for plasma levels of lipids and apolipoproteins in the general, out-bred Caucasian population, we performed a linkage study in four independent samples, including adolescent Dutch twins and adult Dutch, Swedish and Australian twins totaling 493 dizygotic twin pairs. The average spacing of short-tandem-repeat markers was 6 - 8 cM. In the three adult twin samples, we found consistent evidence for linkage of chromosome 19 with LDL cholesterol levels ( maximum LOD scores of 4.5, 1.7 and 2.1 in the Dutch, Swedish and Australian sample, respectively); no indication for linkage was observed in the adolescent Dutch twin sample. The QTL effects in the three adult samples were not significantly different and a simultaneous analysis of the samples increased the maximum LOD score to 5.7 at 60 cM pter. Bivariate analyses indicated that the putative LDL-C QTL also contributed to the variance in ApoB levels, consistent with the high genetic correlation between these phenotypes. Our study provides strong evidence for the presence of a QTL on chromosome 19 with a major effect on LDL-C plasma levels in outbred Caucasian populations.
Resumo:
Our previous studies have shown that two distinct genotypes of Sindbis (SIN) virus occur in Australia. One of these, the Oriental/Australian type, circulates throughout most of the Australian continent, whereas the recently identified south-west (SW) genetic type appears to be restricted to a distinct geographic region located in the temperate south-west of Australia. We have now determined the complete nucleotide and translated amino acid sequences of a SW isolate of SIN virus (SW6562) and performed comparative analyses with other SIN viruses at the genomic level. The genome of SW6562 is 11,569 nucleotides in length, excluding the cap nucleotide and poly (A) tail. Overall this virus differs from the prototype SIN virus (strain AR339) by 23% in nucleotide sequence and 12.5% in amino acid sequence. Partial sequences of four regions of the genome of four SW isolates were determined and compared with the corresponding sequences from a number of SIN isolates from different regions of the World. These regions are the non-structural protein (nsP3), the E2 gene, the capsid gene, and the repeated sequence elements (RSE) of the 3'UTR. These comparisons revealed that the SW SIN viruses were more closely related to South African and European strains than to other Australian isolates of SIN virus. Thus the SW genotype of SIN virus may have been introduced into this region of Australia by viremic humans or migratory birds and subsequently evolved independently in the region. The sequence data also revealed that the SW genotype contains a unique deletion in the RSE of the 3'UTR region of the genome. Previous studies have shown that deletions in this region of the SIN genome can have significant effects on virus replication in mosquito and avian cells, which may explain the restricted distribution of this genotype of SIN virus.
Resumo:
One of the major regulators of mitosis in somatic cells is cdc25B. cdc25B is tightly regulated at multiple levels. The final activation step involves the regulated binding of 14-3-3 proteins. Previous studies have demonstrated that Ser-323 is a primary 14-3-3 binding site in cdc25B, which influences its activity and cellular localization. 14-3-3 binding to this site appeared to interact with the N-terminal domain of cdc25B to regulate its activity. The presence of consensus 14-3-3 binding sites in the N-terminal domain suggested that the interaction is through direct binding of the 14-3-3 dimer to sites in the N-terminal domain. We have identified Ser-151 and Ser-230 in the N-terminal domain as functional 14-3-3 binding sites utilized by cdc25B in vivo. These low affinity sites cooperate to bind the 14-3-3 dimer bound to the high affinity Ser-323 site, thus forming an intramolecular bridge that constrains cdc25B structure to prevent access of the catalytic site. Loss of 14-3-3 binding to either N-terminal site relaxes cdc25B structure sufficiently to permit access to the catalytic site, and the nuclear export sequence located in the N-terminal domain. Mutation of the Ser-323 site was functionally equivalent to the mutation of all three sites, resulting in the complete loss of 14-3-3 binding, increased access of the catalytic site, and access to nuclear localization sequence.
Resumo:
Three pathological fractures occurred secondary to osteolytic lesions of multiple myeloma. Two long bone fractures were each stabilised using interlocking nail fixation augmented with polymethyl meth acral ate bone cement. One vertebral fracture was stabilised using Steinmann pins and PMMA. Successful stabilisation, rapid return to function and improvement in quality of life occurred in all fractures. The patient survived approximately eight months on concurrent chemotherapy.
Resumo:
Using synchrotron X-ray grazing incidence diffraction, superlattice structures have been observed to develop in Langmuir-Blodgett films of cadmium arachidate as the temperature is raised. The previously reported superstructure in the stacked lamellae at room temperature changes at about 70 degreesC and there are further changes at about 90 and 103 degreesC before the major phase transition from stacked lamellae to hexagonally packed rods occurs at 107 degreesC (Langmuir 1997, 13, 1602). Between 70 and 103 degreesC there is a 1 x 10 one-dimensional in-plane superstructure, which is commensurate with the local structure and has an interlayer shift along [01] by a distance of b (of the local structure) at lower temperatures, and a further shift at about 90 degreesC. At lower (
Resumo:
The first genetic linkage map of macadamia (Macadamia integrifolia and M. tetraphylla) is presented. The map is based on 56 F-1 progeny of cultivars 'Keauhou' and 'A16'. Eighty-four percent of the 382 markers analysed segregated as Mendelian loci. The two-way pseudo-testcross mapping strategy allowed construction of separate parental cultivar maps. Ninety bridging loci enabled merging of these maps to produce a detailed genetic map of macadamia, 1100 cM in length and spanning 70-80% of the genome. The combined map comprised 24 linkage groups with 265 framework markers: 259 markers from randomly amplified DNA fingerprinting (RAF), five random amplified polymorphic DNA (RAPD), and one sequence-tagged microsatellite site (STMS). The RAF marker system unexpectedly revealed 16 codominant markers, one of them a putative microsatellite locus and exhibiting four distinct alleles in the cross. This molecular study is the most comprehensive examination to date of genetic loci of macadamia, and is a major step towards developing marker-assisted selection for this crop.
Resumo:
Pili of Neisseria meningitidis are a key virulence factor, being the major adhesin of this capsulate organism and contributing to specificity for the human host. Pili are post-translationally modified by addition of either an O-linked trisaccharide, Gal (beta1-4) Gal (alpha1-3) 2,4-diacetamido-2,4,6-trideoxyhexose or an O-linked disaccharide Gal (alpha1,3) GlcNAc. The role of these structures in meningococcal pathogenesis has not been resolved. In previous studies we identified two separate genetic loci, pglA and pglBCD, involved in pilin glycosylation. Putative functions have been allocated to these genes; however, there are not enough genes to account for the complete biosynthesis of the described structures, suggesting additional genes remain to be identified. In addition, it is not known why some strains express the trisaccharide structure and some the disaccharide structure. In order to find additional genes involved in the biosynthesis. of these structures, we used the recently published group A strain Z2491 and group B strain MC58 Neisseria meningitidis genomes and the unfinished Neisseria meningitidis group C strain FAM18 and Neisseria gonorrhoeae strain FA1090 genomes to identify novel genes involved in pilin glycosylation, based on homology to known oligosaccharide biosynthetic genes. We identified a new gene involved in pilin glycosylation designated pglE and examined four additional genes pgIB/B2, pglF, pglG and pglH. A strain survey revealed that pglE and pglF were present in each strain examined. The pglG, pglH and pgIB2 polymorphisms were not found in strain C311#3 but were present in a large number of clinical isolates. Insertional mutations were constructed in pglE and pglF in N. meningitidis strain C311#3, a strain with well-defined lipopolysaccharide (LPS) and pilin-linked glycan structures. Increased gel migration of the pilin subunit molecules of pglE and pglF mutants was observed by Western analysis, indicating truncation of the trisaccharide structure. Antisera specific for the C311#3 trisaccharide failed to react with pilin from these pglE and pglF mutants. GC-MS analysis of the sugar composition of the pglE mutant showed a reduction in galactose compared with C311#3 wild type. Analysis of amino acid sequence homologies has suggested specific roles for pglE and pglF in the biosynthesis of the trisaccharide structure. Further, we present evidence that pglE, which contains heptanucleotide repeats, is responsible for the phase variation between trisaccharide and disaccharide structures in strain C311#3 and other strains. We also present evidence that pglG, pglH and pgIB2 are potentially phase variable.