316 resultados para 250199 Physical Chemistry not elsewhere classified


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The power of advanced transmission electron microscopy in determining the nanostructures and chemistry of nanosized materials on the applications in semiconductor quantum structures was demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Although the beneficial effects of estrogen use on cardiovascular and cognitive function in postmenopausal women have been recently discredited, controversy remains regarding its usefulness for maintaining skeletal muscle mass or strength. Therefore, the purpose of this study was to determine whether estrogen use is associated with enhanced muscle composition and, if so, whether this translates into improved strength and physical function. Methods: Cross-sectional analysis of 840 well-functioning community-dwelling white women (current estrogen replacement therapy (ERT) users = 259, nonusers = 581) aged 70-79 yr participating in the Health, Aging and Body Composition Study. Muscle composition of the midthigh by computed tomography included cross-sectional area (CSA) of the quadriceps, hamstrings, intermuscular fat and subcutaneous fat, and muscle attenuation in Hounsfield units (HU) as a measure of muscle density. Isometric hand grip and isokinetic knee extensor strength were assessed by dynamometry. Physical function was assessed using a summary scale that included usual 6-m walk and narrow walk speed, repeated chair stands, and standing balance. Results: In analyses of covariance adjusted for relevant confounders. quadriceps muscle CSA and HU were greater in Current ERT than non-ERT women (P < 0.05). Grip strength was also greater (P < 0.05) in women taking ERT while knee extensor strength approached significance (P < 0.10). However, differences in muscle composition and strength were modest at <= 3.3%. There was no difference by ERT status for the hamstring, muscles. fat CSA. or for physical function. Conclusion: The associations between ERT and muscle composition and strength were minor and did not translate into improved physical function. Initiation of ERT for preservation of muscle composition and function may not be indicated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we investigate the mixture adsorption of ethylene, ethane, nitrogen and argon on graphitized thermal carbon black and in slit pores by means of the Grand Canonical Monte Carlo simulations. Pure component adsorption isotherms on graphitized thermal carbon black are first characterized with the GCMC method, and then mixture simulations are carried out over a wide range of pore width, temperature, pressure and composition to investigate the cooperative and competitive adsorption of all species in the mixture. Results of mixture simulations are compared with the experimental data of ethylene and ethane (Friederich and Mullins, 1972) on Sterling FTG-D5 (homogeneous carbon black having a BET surface area of 13 m(2)/g) at 298 K and a pressure range of 1.3-93 kPa. Because of the co-operative effect, the Henry constant determined by the traditional chromatography method is always greater than that obtained from the volumetric method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The specific surface area (SSA) of single-walled carbon nanotubes (SWNTs) has been measured by different groups. Fujiwara et al. measured the SSA of SWNT bundles by using nitrogen and oxygen as adsorbates, and found that the SSA from O2-adsorption was 6.6% larger than that from N2-adsorption for the same SWNT sample [1]. Also Wei et al. [2] measured the SSA of HiPco SWNTs by using O2, N2 and Ar, and found that, for the same samples, Vm(Ar) > Vm(O2) > Vm(N2), here Vm is the monolayer adsorption capacity at the standard conditions of temperature and pressure (STP). Those research results indicate that, for the same SWNT sample, its measured surface area depends on the employed adsorbate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we investigate the difference between the adsorption of spherical molecule argon (at 87.3 K) and the flexible normal butane (at an equivalent temperature of 150 K) in carbon slit pores. These temperatures are equivalent in the sense that they have the same relative distances between their respective triple points and critical points. Higher equivalent temperatures are also studied (122.67 K for argon and 303 K for n-butane) to investigate the effects of temperature on the 2D-transition in adsorbed density. The Grand Canonical Monte Carlo simulation is used to study the adsorption of these two model adsorbates. Beside the longer computation times involved in the computation of n-butane adsorption, n-butane exhibits many interesting behaviors such as: (i) the onset of adsorption occurs sooner (in terms of relative pressure), (ii) the hysteresis for 2D- and 3D-transitions is larger, (iii) liquid-solid transition is not possible, (iv) 2D-transition occurs for n-butane at 150 K while it does not happen for argon except for pores that accommodate two layers of molecules, (v) the maximum pore density is about four times less than that of argon and (vi) the sieving pore width is slightly larger than that for argon. Finally another feature obtained from the Grand Canonical Monte Carlo (GCMC) simulation is the configurational arrangement of molecules in pores. For spherical argon, the arrangement is rather well structured, while for n-butane the arrangement depends very much on the pore size. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Young people are physical (as are adults) and their bodies are significant in relation to who they are, what and how they learn, and who they can become. Consistent with middle schooling philosophy, but often not reflected in practice, a balanced approach to all aspects of the growth and development of young people is supported. Much research has shown the middle years is an important time assigned to 'identity development' and 'physical development' while it is also a time when many young people become less physically active and less engaged in learning at school. This paper reviews current research about physical activity, physical education and physicality in order to locate the place of the physical in the lives of young people and encourage practices in the middle years that acknowledge this physicality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an overlapping generations model with physical and human capital and income inequality. It shows that inequality impedes output growth by directly harming capital accumulation and indirectly raising the ratio of physical to human capital. The convergence speed of output growth equals the lower of the convergence speeds of the relative capital ratio and inequality, and varies with initial states. Among economies with the same balanced growth rate but different initial income levels, the ranking of income can switch in favor of those starting from low inequality and a low ratio of physical to human capital, particularly if the growth rate converges slowly. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microstructure of MmNi(3.5)(CoAlMn)(1.5)/Mg (here Mm denotes La-rich mischmetal) multi-layer hydrogen storage thin films prepared by direct current magnetron sputtering was investigated by cross-sectional transmission electron microscopy (XTEM). It was shown that the MMM5 layers are composed of two regions: an amorphous region with a thickness of similar to 4nm at the bottom of the layers and a randomly orientated nanocrystallite region on the top of the amorphous region and the Mg layers consist of typical columnar crystallite with their [001] direction nearly parallel to the growth direction. The mechanism for the formation of the above microstructure characteristics in the multi-layer thin films has been proposed. Based on the microstructure feature of the multi-layer films, mechanism for the apparent improvement of hydrogen absorption/desorption kinetics was discussed. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The formation of MgA1 layered double hydroxide (LDH) from physically mixed MgO and Al2O3 oxides upon hydrothermal treatment has been extensively investigated, and a formation mechanism has been proposed. We observed that the formation of LDH from the oxide mixture occurs upon heating at 110 degreesC. In general, LDH is the major component while the minor phases are mainly determined by the initial pH of the oxide suspension as well as the MgO/Al2O3 ratio. The neutrality in the initial suspension results in a minor Mg(OH)(2) as the impure phase, while the alkalinity in the suspension keeps some MgO unreacted throughout the whole hydrothermal treatment. We suggest that MgO and Al2O3 be hydrated into Mg(OH)(2) and Al(OH)(3), respectively, in the initial stage for all samples. We further Suggest that in the neutral condition Mg(OH)2 be quickly dissociated to Mg2+ and OH- which then deposit on the surface of Al(OH)(3)/Al2O3 to form a M-Al pre-LDH material. Al(OH)(4)(-), ionized from Al(OH)(3) in the basic solution, deposits on the surface of Mg(OH)(2)/MgO to result in a similar MgAl pre-LDH material. Such a pre-LDH material is then well crystallized upon continuous heating via the diffusion of metal ions in the solid lattice. Such a dissociation-deposition-diffusion mechanism via two pathways has been supported by the phase composition, morphological features of crystallites, and [Mg]/[Al] ratios on the crystallite surface. and presumably applied to the general formation of LDHs with various synthetic methods. Such as coprecipitation, homogeneous preparation, and reconstruction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the interlayer swelling and molecular packing in organoclays is important to the formation and design of polymer nanocomposites. This paper presents recent experimental and molecular simulation studies on a variety of organoclays that show a linear relationship between the increase of d-spacing and the mass ratio between organic and clay. A denser molecular packing is observed in organoclays containing surfactants with hydroxyl-ethyl units. Moreover, our simulation results show that the head (nitrogen) groups are essentially tethered to the clay surface while the long hydrocarbon chains tend to adopt a layering structure with disordered conformation, which contrasts with the previous assumptions of either the chains lying parallel to the clay surface or being tilted at rather precise angles. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystalline zirconia was synthesized and used as catalyst support for methanol synthesis. The nanocrystallite particles have new physical and textural properties which are critical in determining the catalytic performance. Nanocrystalline zirconia changes the electronic structure and affects the metal and support interactions on the catalyst. leading to facile reduction. intimate interaction between copper and zirconia, more corner defects and oxygen vacancies on the surface of the catalyst. All these changes are beneficial to the reaction of methanol synthesis from hydrogenation of CO2. As a result. higher conversion of CO2 and selectivity of methanol are achieved compared to the catalysts prepared by conventional co-precipitation method. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zirconium phosphate has been extensively studied as a proton conductor for proton exchange membrane (PEM) fuel cell applications. Here we report the synthesis of mesoporous, templated sol-gel zirconium phosphate for use in PEM applications in an effort to determine its suitability for use as a surface functionalised, solid acid proton conductor in the future. Mesoporous zirconium phosphates were synthesised using an acid-base pair mechanism with surface areas between 78 and 177 m(2) g(-1) and controlled pore sizes in the range of 2-4 nm. TEM characterisation confirmed the presence of a wormhole like pore structure. The conductivity of such materials was up to 4.1 x 10(-6) S cm(-1) at 22degreesC and 84% relative humidity (RH), while humidity reduction resulted in a conductivity decrease by more than an order of magnitude. High temperature testing on the samples confirmed their dependence on hydration for proton conduction and low hydroscopic nature. It was concluded that while the conductivity of these materials is low compared to Nafion, they may be a good candidate as a surface functionalised solid acid proton conductor due to their high surface area, porous structure and inherent ability to conduct protons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on a self-similar array model of single-walled carbon nanotubes (SWNTs), the pore structure of SWNT bundles is analyzed and compared with that obtained from the conventional triangular model and adsorption experimental results. In addition to the well known cylindrical endo-cavities and interstitial pores, two types of newly defined pores with diameters of 2-10 and 8-100 nm are proposed, inter-bundle pores and inter-array pores. In particular, the relationship between the packing configuration of SWNTs and their pore structures is systematically investigated. (c) 2005 American Institute of Physics.