249 resultados para NEUROHYPOPHYSEAL PEPTIDES
Resumo:
This study describes a simple method for long-term establishment of human ovarian tumor lines and prediction of T-cell epitopes that could be potentially useful in the generation of tumor-specific cytotoxic T lymphocytes (CTLs), Nine ovarian tumor lines (INT.Ov) were generated from solid primary or metastatic tumors as well as from ascitic fluid, Notably all lines expressed HLA class I, intercellular adhesion molecule-1 (ICAM-1), polymorphic epithelial mucin (PEM) and cytokeratin (CK), but not HLA class II, B7.1 (CD80) or BAGE, While of the 9 lines tested 4 (INT.Ov1, 2, 5 and 6) expressed the folate receptor (FR-alpha) and 6 (INT.Ov1, 2, 5, 6, 7 and 9) expressed the epidermal growth factor receptor (EGFR); MAGE-1 and p185(HER-2/neu) were only found in 2 lines (INT.Ov1 and 2) and GAGE-1 expression in 1 line (INT.Ov2). The identification of class I MHC ligands and T-cell epitopes within protein antigens was achieved by applying several theoretical methods including: 1) similarity or homology searches to MHCPEP; 2) BIMAS and 3) artificial neural network-based predictions of proteins MACE, GAGE, EGFR, p185(HER-2/neu) and FR-alpha expressed in INT.Ov lines, Because of the high frequency of expression of some of these proteins in ovarian cancer and the ability to determine HLA binding peptides efficiently, it is expected that after appropriate screening, a large cohort of ovarian cancer patients may become candidates to receive peptide based vaccines. (C) 1997 Wiley-Liss, Inc.
Resumo:
The ligand-binding region of the low-density lipoprotein (LDL) receptor is formed by seven N-terminal, imperfect, cysteine-rich (LB) modules. This segment is followed by an epidermal growth factor precursor homology domain with two N-terminal, tandem, EGF-like modules that are thought to participate in LDL binding and recycling of the endocytosed receptor to the cell surface. EGF-A and the concatemer, EGF-AB, of these modules were expressed in Escherichia coli. Correct protein folding of EGF-A and the concatemer EGF-AB was achieved in the presence or absence of calcium ions, in contrast to the LB modules, which require them for correct folding. Homonuclear and heteronuclear H-1-N-15 NMR spectroscopy at 17.6 T was used to determine the three-dimensional structure of the concatemer. Both modules are formed by two pairs of short, anti-parallel beta -strands. In the concatemer, these modules have a fixed relative orientation, stabilized by calcium ion-binding and hydrophobic interactions at the interface. N-15 longitudinal and transverse relaxation rates, and {H-1}-N-15 heteronuclear NOEs were used to derive a model-free description of the backbone dynamics of the molecule. The concatemer appears relatively rigid, particularly near the calcium ion-binding site at the module interface, with an average generalized order parameter of 0.85 +/- 0.11. Some mutations causing familial hypercholesterolemia may now be rationalized. Mutations of D41, D43 and E44 in the EGF-B calcium ion-binding region may affect the stability of the linker and thus the orientation of the tandem modules. The diminutive core also provides little structural stabilization, necessitating the presence of disulfide bonds. The structure and dynamics of EGF-AB contrast with the N-terminal LB modules, which require calcium ions both for folding to form the correct disulfide connectivities and for maintenance of the folded structure, and are connected by highly mobile linking peptides. (C) 2001 Academic Press.
Resumo:
Solid-state C-13 NMR spectroscopy was used to investigate the three-dimensional structure of melittin as lyophilized powder and in ditetradecylphosphatidylcholine (DTPC) membranes. The distance between specifically labeled carbons in analogs [1-C-13]Gly3-[2-C-13]Ala4, [1-C-13]Gly3-[2-C-13]Leu6, [1-C-13]Leu13-[2-C-13]Ala15, [2-C-13]Leu13-[1-C-13]Ala15, and [1-C-13]Leu13-[2-C-13]Leu16 was measured by rotational resonance. As expected, the internuclear distances measured in [1-C-13]Gly3-[2-C-13]Ala4 and [1-C-13]Gly3-[2-C-13]Leu6 were consistent with alpha -helical structure in the N-terminus irrespective of environment. The Internuclear distances measured in [1-C-13]Leu13-[2-C-13]Ala15, [2-C-13]Leu13-[1-C-13]Ala15, and [1-C-13]Leu13-[2-C-13]Leu16 revealed, via molecular modeling, some dependence upon environment for conformation in the region of the bend in helical structure induced by Pro14. A slightly larger interhelical angle between the N- and C-terminal helices was indicated for peptide in dry or hydrated gel state DTPC (139 degrees -145 degrees) than in lyophilized powder (121 degrees -139 degrees) or crystals (129 degrees). The angle, however, is not as great as deduced for melittin in aligned bilayers of DTPC in the liquid-crystalline state (similar to 160 degrees) (R. Smith, F. Separovic, T. J. Milne, A. Whittaker, F. M. Bennett, B. A. Cornell, and A. Makriyannis, 1994, J. Mol, Biol 241:456-466). The study illustrates the utility of rotational resonance in determining local structure within peptide-lipid complexes.
Resumo:
One cause of congenital lactic acidosis is a mutation in the E1 alpha -subunit of the pyruvate dehydrogenase multienzyme complex. Little is known about the consequences of these mutations at the enzymatic level. Here we study the A199T mutation by expressing the protein in Escherichia coil. The specific activity is 25% of normal and the K-m for pyruvate is elevated by 10-fold. Inhibitors of lactate dehydrogenase might be a useful therapy for patients with such mutations. (C) 2001 Academic Press.
Resumo:
Tapasin is critical for efficient loading and surface expression of most HLA class I molecules. The high level surface expression of HLA-B*2705 on tapasin-deficient 721.220 cells allowed the influence of this chaperone on peptide repertoire to be examined. Comparison of peptides bound to HLA-B*2705 expressed on tapasin-deficient and -proficient cells by mass spectrometry revealed an overall reduction in the recovery of B*2705-bound peptides isolated from tapasin-deficient cells despite similar yields of B27 heavy chain and beta (2)-microglobulin. This indicated that a proportion of suboptimal ligands were associated with B27, and they were lost during the purification process. Notwithstanding this failure to recover these suboptimal peptides, there was substantial overlap in the repertoire and biochemical properties of peptides recovered from B27 complexes derived from tapasin-positive and -negative cells. Although many peptides were preferentially or uniquely isolated from B*2705 in tapasin-positive cells, a number of species were preferentially recovered in the absence of tapasin, and some of these peptide ligands have been sequenced. In general, these ligands did not exhibit exceptional binding affinity, and we invoke an argument based on lumenal availability and affinity to explain their tapasin independence. The differential display of peptides in tapasin-negative and -positive cells was also apparent in the reactivity of peptide-sensitive alloreactive CTL raised against tapasin-positive and -negative targets, demonstrating the functional relevance of the biochemical observation of changes in peptide repertoire in the tapasin-deficient APC. Overall, the data reveal that tapasin quantitatively and qualitatively influences ligand selection by class I molecules.
Resumo:
In this study, we have compared the effector functions and fate of a number of human CTL clones in vitro or ex vivo following contact with variant peptides presented either on the cell surface or in a soluble multimeric format. In the presence of CD8 coreceptor binding, there is a good correlation between TCR signaling, killing of the targets, and Fast-mediated CTL apoptosis. Blocking CD8 binding using (alpha3 domain mutants of MHC class I results in much reduced signaling and reduced killing of the targets. Surprisingly, however, Fast expression is induced to a similar degree on these CTLs, and apoptosis of CTL is unaffected. The ability to divorce these events may allow the deletion of antigen-specific and pathological CTL populations without the deleterious effects induced by full CTL activation.
Resumo:
Objective. Infiltration of rheumatoid arthritis (RA) synovial tissue (ST) by differentiated dendritic cells (DC) is a consistent feature in patients with active disease. However, mononuclear cells (MNC), including DC, may be nonspecifically chemoattracted to inflammatory sites regardless of etiology, Therefore, to evaluate the specificity of ST infiltration by differentiated DC, synovial biopsies from patients with RA, spondylarthropathy (SpA), osteoarthritis (OA), and gout were examined. Methods. Formalin-fixed ST sections were analyzed by double immunohistochemical staining for vascularity and infiltration by differentiated DC, lymphocytes, and macrophages. Results, DC containing nuclear RelB were found in perivascular MNC aggregates from patients with all arthritides studied. Infiltration by differentiated DC was similar in RA and SpA ST, but reduced in OA ST. Differentiated DC were always observed in close association with lymphocytes, and the correlation between these variables suggested that the infiltration of inflammatory sites by DC and lymphocytes was associated. Conclusion, Perivascular infiltration by DC, lymphocytes, and macrophages is nonspecifically related to inflammation, but signals present in RA and SpA ST lead to more intense cellular infiltration and accumulation.
Resumo:
An improved differential display technique was used to search for changes in gene expression in the superior frontal cortex of alcoholics, A cDNA fragment was retrieved and cloned. Further sequence of the cDNA was determined from 5' RACE and screening of a human brain cDNA library. The gene was named hNP22 (human neuronal protein 22). The deduced protein sequence of hNP22 has an estimated molecular mass of 22.4 kDa with a putative calcium-binding site, and phosphorylation sites for casein kinase II and protein kinase C. The deduced amino acid sequence of hNP22 shares homology (from 67% to 42%) with four other proteins, SM22 alpha, calponin, myophilin and mp20. Sequence homology suggests a potential interaction of hNP22 with cytoskeletal elements. hNP22 mRNA was expressed in various brain regions but in alcoholics, greater mRNA expression occurred in the superior frontal cortex, but not in the primary motor cortex or cerebellum. The results suggest that hNP22 may have a role in alcohol-related adaptations and may mediate regulatory signal transduction pathways in neurones.
Resumo:
Antibodies were raised against specific peptides from N-terminal regions of the alpha (1) and alpha (3) isoforms of the GABA(A) receptor, and used to assess the relative expression of these proteins in the superior frontal and primary motor cortices of 10 control, nine uncomplicated alcoholic and six cirrhotic alcoholic cases were matched for age and post-mortem delay. The regression of expression on post-mortem delay was not statistically significant for either isoform in either region. In both cortical areas, the regression of a, expression on age differed significantly between alcoholic cases, which showed a decrease, and normal controls, which did not. Age had no effect on alpha (3) expression. The alpha (1) and alpha (3) isoforms were found to be expressed differentially across cortical regions and showed a tendency to be expressed differentially across case groups. In cirrhotic alcoholics, alpha (1) expression was greater in superior frontal than in motor cortex, whereas this regional difference was not significant in controls or uncomplicated alcoholics. In uncomplicated alcoholics, alpha (3) expression was significantly lower in superior frontal than in motor cortex. Expression of alpha (1) was significantly different from that Of alpha (3) in the superior frontal cortex of alcoholics, but not in controls. In motor cortex, there were no significant differences in expression between the isoforms in any case group.
Resumo:
To obtain methotrexate (MTX) derivatives with a balanced hydrolipophilic character, we synthesized a series of conjugates in which the drug was linked to lipoamino acid (LAA)-glucose residues (LAAG-MTX). These conjugates displayed increased solubility in polar media compared with the corresponding LAA-MTX conjugates previously described. In vitro biological testing of LAAG-MTX indicated that the introduction of the sugar moiety decreased the biological activity of these MTX conjugates. The tetradecyl derivative 6b, however, was effective in inhibiting the dihydrofolate reductase activity in vitro and showed an inhibitory effect on human lymphoblastoid cell growth. (C) 2001 Wiley-Liss, Inc.
Resumo:
We have isolated a novel family of insect-selective neurotoxins that appear to be the most potent blockers of insect voltage-gated calcium channels reported to date. These toxins display exceptional phylogenetic specificity, with at least a 10,000-fold preference for insect versus vertebrate calcium channels. The structure of one of the toxins reveals a highly structured, disulfide-rich core and a structurally disordered C-terminal extension that is essential for channel blocking activity. Weak structural/functional homology with omega -agatoxin-IVA/B, the prototypic inhibitor of vertebrate P-type calcium channels, suggests that these two toxin families might share a similar mechanism of action despite their vastly different phylogenetic specificities.
Resumo:
Individuals with acute hepatitis B virus (HBV) infection characteristically mount a strong, multispecific cytotoxic T lymphocyte (CTL) response that is effective in eradicating virus. In contrast, this response in chronic carriers is usually weak or undetectable. Since it is generally acknowledged that HBV pathogenesis is immune-mediated, the occurrence of episodes of active liver disease in many carriers suggests that these individuals can mount active CTL responses to HBV. To see whether the detection of circulating CTLs is related to these flare episodes, we have determined the CTL precursor (CTLp) frequencies to HLA-A2-restricted viral peptides in seven patients over a 12-24-month period of their disease. Limiting dilution analyses (LDA) were performed longitudinally to five epitopes comprising the viral capsid (HBc), envelope (HBs) and polymerase (pol) proteins. Assays were performed against a mixture of peptides, or against each individual peptide, to measure overall CTL activity and the multispecificity of the responses, respectively. Since two of the patients were treated with recombinant human interleukin-12 (rHuIL-12) at the time, with one individual achieving complete disease remission a year later after being treated with interferon-alpha, we were also able to examine the effects of these cytokines on HBV cytotoxicity. Our results indicate that weak but detectable CTL responses do occur in chronic carriers which are generally associated with disease flares, although CTLps were also seen occasionally during minimal disease activity. The range of specificities varied between individuals and within each individual during the course of the disease. Finally, we also provide evidence that CTL reactivity is stimulated following treatment with certain cytokines, but is dependent on the time of administration.
Resumo:
The cystine knot structural motif is present in peptides and proteins from a variety of species, including fungi, plants, marine molluscs. insects and spiders. It comprises an embedded ring formed by two disulfide bonds and their connecting backbone segments which is threaded by a third disulfide bond. It is invariably associated with nearby beta-sheet structure and appears to be a highly efficient motif for structure stabilization. Because of this stability it makes an ideal framework for molecular engineering applications. In this review we summarize the main structural features of the cystine knot motif, focussing on toxin molecules containing either the inhibitor cystine knot or the cyclic cystine knot. Peptides containing these motifs are 26-48 residues long and include ion channel blockers, haemolytic agents, as well as molecules having antiviral and antibacterial activities. The stability of peptide toxins containing the cystine knot motif, their range of bioactivities and their unique structural scaffold can be harnessed for molecular engineering applications and in drug design. Applications of cystine knot molecules for the treatment of pain. and their potential use in antiviral and antibacterial applications are described. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Methyl tetra-O-allyl, and tetra-O-[2-(tetrahydro-2H-pyranyl)oxy.-3-oxapentyl glucosides, and tetra-O-(cyanoethyl)galactosyl azide were converted into derivatives containing linkers with terminal carboxylic acid functionalities at the anomeric position and bearing four arms with phthaloyl- or BOC-protected terminal amino groups. These molecules were suitable for use in solid-phase peptide synthesis and for the preparation of dendrimers, containing multiple copies of peptides. (C) 2001 Elsevier Science Ltd. All rights reserved.