211 resultados para TISSUE DOPPLER IMAGING
Resumo:
An immunoperoxidase technique was used to examine CD28, CD152, CD80 and CD86 positive cells in gingival biopsies from 21 healthy/gingivitis and 26 periodontitis subjects. The samples were placed into 3 groups (small, intermediate, large) according to the size of the infiltrate. The percent CD28+ T cells in the connective tissue infiltrates was highly variable with no differences between the healthy/gingivitis and periodontitis groups. While there was an increase in positive cells in intermediate infiltrates from both healthy/gingivitis (28.5%) and periodontitis (21.4%) patients compared with small infiltrates (8.6% and 11.8%, respectively), this was not significant, although the percent CD28+ T cells did increase significantly in tissues with increased proportions of B cells relative to T cells (p=0.047). A mean of less than 5% infiltrating T cells were CD152+ which was significantly lower than the mean percent CD28+ T cells in intermediate healthy/gingivitis lesions (p=0.021). The mean percent CD80+ and CD86+ B cells and macrophages was 1–7% and 8–16%, respectively, the difference being significant in intermediate healthy/gingivitis tissues (p=0.012). Analysis of these cells in relation to increasing numbers of B cells in proportion to T cells and also to macrophages, suggested that CD80 was expressed predominantly by macrophages while CD86 was expressed by both macrophages and B cells. Few endothelial cells expressed CD80 or CD86. Keratinocytes displayed cytoplasmic staining of CD80 rather than CD86 although the numbers of positive specimens in the healthy/gingivitis and periodontitis groups reduced with increasing inflammation. In conclusion, percentages of CD28, CD152, CD80 and CD86 did not reflect differences in clinical status. However, the percent CD28+ T cells increased with increasing size of infiltrate and with increasing proportions of B cells suggesting increased T/B cell interactions with increasing inflammation. The percent CD152+ cells remained low indicating that CD152 may not be involved in negative regulation of T cells in periodontal disease. CD80 and CD86 have been reported to promote Th1 and Th2 responses, respectively, and the higher percent CD86+ cells suggests a predominance of Th2 responses in both healthy/gingivitis and periodontitis tissues. Nevertheless, other factors including cytokines themselves and chemokines which modulate T cell cytokine profiles must be monitored to determine the nature of Th1/Th2 responses in periodontal disease.
Resumo:
Nitric oxide (NO) is a free radical which has complex roles in both health and disease. It is now recognized that NO is essential for a vast spectrum of intracellular and extracellular events in a wide variety of tissues. NO has also been implicated in the pathogenesis of numerous inflammatory and autoimmune diseases. In this review we consider the roles of NO generally and in particular the implications for periodontal diseases.
Resumo:
Both tissue plasminogen activator (t-PA) and plasminogen activator inhibitor 2 (PAI-2) are important proteolysis factors present in inflamed human periodontal tissues. The aim of the present study was to investigate the effect of lipopolysaccharide (LPS) on the synthesis: of t-PA and PAI-2 by human gingival fibroblasts (HGF). LPS from different periodontal pathogens including Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis and Fusobacterium nucleatum were extracted by the hot phenol water method. The levels of t-PA and PAI-2 secreted into the cell culture media were measured by enzyme-linked immunosorbent assays (ELISA). The mRNA for t-PA and PAI-2 were measured by RT-PCR. The results showed t-PA synthesis was increased in response to all types of LPS studied and PAI-2 level was increased by LPS from A. actinomycetemcomitans and F. nucleatum, but not P. gingivalis. When comparing the effects of LPS from non-periodontal bacteria (Escherichia coli and Salmonella enteritidis) with the LPS from periodontal pathogens, we found that the ratio of t-PA to PAI-2 was greater following exposure of the cells to LPS from periodontal pathogens. The highest ratio of t-PA to PAI-2 was found in those cells exposed to LPS from P. gingivalis. These results indicate that LPS derived from periodontal pathogens may cause unbalanced regulation of plasminogen activator and plasminogen activator inhibitor by HGF and such an effect may, in part, contribute to the destruction of periodontal connective tissue through dysregulated pericellular proteolysis.