442 resultados para 090199 Aerospace Engineering not elsewhere classified


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Minimal representations are known to have no redundant elements, and are therefore of great importance. Based on the notions of performance and size indices and measures for process systems, the paper proposes conditions for a process model being minimal in a set of functionally equivalent models with respect to a size norm. Generalized versions of known procedures to obtain minimal process models for a given modelling goal, model reduction based on sensitivity analysis and incremental model building are proposed and discussed. The notions and procedures are illustrated and compared on a simple example, that of a simple nonlinear fermentation process with different modelling goals and on a case study of a heat exchanger modelling. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A systematic goal-driven top-down modelling methodology is proposed that is capable of developing a multiscale model of a process system for given diagnostic purposes. The diagnostic goal-set and the symptoms are extracted from HAZOP analysis results, where the possible actions to be performed in a fault situation are also described. The multiscale dynamic model is realized in the form of a hierarchical coloured Petri net by using a novel substitution place-transition pair. Multiscale simulation that focuses automatically on the fault areas is used to predict the effect of the proposed preventive actions. The notions and procedures are illustrated on some simple case studies including a heat exchanger network and a more complex wet granulation process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The power of advanced transmission electron microscopy in determining the nanostructures and chemistry of nanosized materials on the applications in semiconductor quantum structures was demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High pressure die casting is the most important production method for casting magnesium alloy components, and uniformity of appearance is an important criterion for acceptance of a component by customers. This paper investigates the influence of uniformity in surface appearance of diecast AZ91D plates on their corrosion behaviour. Through immersion, hydrogen collection and weight loss measurements it was found that corrosion is more likely to occur on the areas of the plate that appear to be darker, leading to a non-uniformly corroded surface. Microstructural analysis showed that the non-uniformity in appearance is related to a difference in the morphology and distribution of porosity across the surface of a diecast AZ91D plate. The darker areas of the surface are high in porosity which breaks the continuity of the beta-phase network and provides shortcut paths for corrosion from the surface to the interior of the casting. The brighter shiny areas of the surface are much less porous, with isolated pores being confined by corrosion resistant beta-precipitates thus reducing the corrosion rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of the beta phase in Mg-Al alloys on the corrosion performance of an anodised coating was studied. It was found that the corrosion resistance of the anodised coating was closely associated with the corrosion performance of the substrate alloy. In particular, Mg alloys with a dual phase microstructure of alpha + beta with intermediate aluminium contents (namely 5%, 10% and 22% Al) after anodisation had the highest corrosion rate and the worst corrosion resistance provide by the anodised coating. The poor performance of an anodised coating was attributed partly to lower corrosion resistance of the substrate alloy and partly to the higher porosity of the anodised coating. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This review aims to provide a foundation for the safe and effective use of magnesium (Mg) alloys, including practical guidelines for the service use of Mg alloys in the atmosphere and/or in contact with aqueous solutions. This is to provide support for the rapidly increasing use of Mg in industrial applications, particularly in the automobile industry. These guidelines should be firmly based on a critical analysis of our knowledge of SCC based on (1) service experience, (2) laboratory testing and (3) understanding of the mechanism of SCC, as well as based on an understanding of the Mg corrosion mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we investigate the mixture adsorption of ethylene, ethane, nitrogen and argon on graphitized thermal carbon black and in slit pores by means of the Grand Canonical Monte Carlo simulations. Pure component adsorption isotherms on graphitized thermal carbon black are first characterized with the GCMC method, and then mixture simulations are carried out over a wide range of pore width, temperature, pressure and composition to investigate the cooperative and competitive adsorption of all species in the mixture. Results of mixture simulations are compared with the experimental data of ethylene and ethane (Friederich and Mullins, 1972) on Sterling FTG-D5 (homogeneous carbon black having a BET surface area of 13 m(2)/g) at 298 K and a pressure range of 1.3-93 kPa. Because of the co-operative effect, the Henry constant determined by the traditional chromatography method is always greater than that obtained from the volumetric method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the granitic Seychelles, many shores and beaches are fringed by coral reef flats which provide protection to shores from erosion by waves. The surfaces of these reef flats support a complex ecology. About 10 years ago their seaward zones were extensively covered by a rich coral growth, which reached approximately to mean low water level, but in 1998 this was largely killed by seawater warming. The resulting large expanses of dead coral skeletons in these locations are now disintegrating, and much of the subsequent modest recovery by new coral recruitment was set back by further mortalities. A mathematical model of wave energy reaching shorelines protected by coral reef flats has been applied to 14 Seychelles reefs. It is derived from equations which predict: (1) the raised water level, or wave set-up, on reef flats resulting from wave breaking, which depends upon offshore wave height and period, depth of still water over the reef flat and the reef crest profile, and (2) the decay of energy from reef edge to shoreline that is affected by width of reef flat, surface roughness, sea level rise and 'pseudo-sea level rise' created by increased depth resulting from disintegration of coral colonies. The model treats each reef as one entity, but because biota and zonation on reef flats are not homogenous, all reefs are divided into four zones. In each, cover by both living and dead biota was estimated for calculation of parameters, and then averaged to obtain input data for the model. All possible biological factors were taken into account, such as the ability of seagrass beds to grow upwards to match expected sea level rise, reduction in height of the reef flat in relation to sea level as zones of dead corals decay, and the observed 'rounding' of reef crests as erosion removes corals from those areas. Estimates were also made of all these factors for a time approximately a decade ago, representing a time before the mass coral mortality, and for approximately a decade in the future when the observed rapid state of dead coral colony disintegration is assumed to have reached an end point. Results of increased energy over the past decade explain observations of erosion in some sites in the Seychelles. Most importantly, it is estimated that the rise in energy reaching shores protected by fringing reefs will now accelerate more rapidly, such that the increase expected over the next decade will be approximately double than that seen over the past decade. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The galvanic corrosion of magnesium alloy AZ91D coupled to a steel fastener was studied using a boundary element method (BEM) model and experimental measurements. The BEM model used the measured polarization curves as boundary conditions. The experimental program involved measuring the total corrosion rate as a function of distance from the interface of the magnesium in the form of a sheet containing a mild steel circular insert (5 to 30 mm in diameter). The measured total corrosion rate was interpreted as due to galvanic corrosion plus self corrosion. For a typical case, the self corrosion was estimated typically to be similar to 230 mm/y for an area surrounding the interface and to a distance of about I cm from the interface. Scanning Kelvin Probe Force Microscopy (SKPFM) revealed microgalvanic cells with potential differences of approximately 100 mV across the AZ91D surface. These microgalvanic cells may influence the relative contributions of galvanic and self corrosion to the total corrosion of AZ91D.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A hydrogel intervertebral disc (lVD) model consisting of an inner nucleus core and an outer anulus ring was manufactured from 30 and 35% by weight Poly(vinyl alcohol) hydrogel (PVA-H) concentrations and subjected to axial compression in between saturated porous endplates at 200 N for 11 h, 30 min. Repeat experiments (n = 4) on different samples (N = 2) show good reproducibility of fluid loss and axial deformation. An axisymmetric nonlinear poroelastic finite element model with variable permeability was developed using commercial finite element software to compare axial deformation and predicted fluid loss with experimental data. The FE predictions indicate differential fluid loss similar to that of biological IVDs, with the nucleus losing more water than the anulus, and there is overall good agreement between experimental and finite element predicted fluid loss. The stress distribution pattern indicates important similarities with the biological lVD that includes stress transference from the nucleus to the anulus upon sustained loading and renders it suitable as a model that can be used in future studies to better understand the role of fluid and stress in biological IVDs. (C) 2005 Springer Science + Business Media, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim Of this study was to develop a steel powder system for rapid tooling applications. The properties required are rapid densification, dimensional precision. high mechanical strength and corrosion resistance. To this end. the densification and microstructural development of a loose packed 200 grade maraging steel powder sintered with ferrophosphorous additions was examined. Liquid initially formed from a reaction of the Fe3P and carbon, which was a residue of the polymeric binder used to shape the powder compact. This liquid caused a burst of sintering which ceased as the liquid dissipated. On further heating, a phosphorous rich supersolidus liquid appeared at triple points and grain boundaries leading to rapid densification and a sintered density of 98%.