44 resultados para reduced nicotinamide adenine dinucleotide phosphate


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sixty-nine intestinal spirochetes isolated from pigs and poultry in eastern Australia were selected to evaluate the effectiveness of a species-specific PCR-based restriction fragment length polymorphism (RFLP) analysis of the Brachyspira nox gene. For comparative purposes, all isolates were subjected to species-specific PCRs for the pathogenic species Brachyspira hyodysenteriae and Brachyspira pilosicoli, and selected isolates were examined further by sequence analysis of the nox and 16S ribosomal RNA genes. Modifications to the original nox-RFLP method included direct inoculation of bacterial cells into the amplification mixture and purification of the PCR product, which further optimized the nox-RFLP for use in a veterinary diagnostic laboratory, producing sufficient product for both species identification and future comparisons. Although some novel profiles that prevented definitive identification were observed, the nox-RFLP method successfully classified 45 of 51 (88%) porcine and 15 of 18 (83%) avian isolates into 5 of the 6 recognized species of Brachyspira. This protocol represents a significant improvement over conventional methods currently used in veterinary diagnostic laboratories for rapid specific identification of Brachyspira spp. isolated from both pigs and poultry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of three osmolytes, trimethylamine N-oxide (TMAO), betaine and proline, on the interaction of muscle glycogen phosphorylase b with allosteric inhibitor FAD has been examined. In the absence of osmolyte, the interaction is described by a single intrinsic dissociation constant (17.8 muM) for two equivalent and independent binding sites on the dimeric enzyme. However, the addition of osmolytes gives rise to sigmoidal dependencies of fractional enzyme-site saturation upon free inhibitor concentration. The source of this cooperativity has been shown by difference sedimentation velocity to be an osmolyte-mediated isomerization of phosphorylase b to a smaller dimeric state with decreased affinity for FAD. These results thus have substantiated a previous inference that the tendency for osmolyte-enhanced self-association of dimeric glycogen phosphorylase b in the presence of AMP was being countered by the corresponding effect of molecular crowding on an isomerization of dimer to a smaller, nonassociating state. (C) 2004 Elsevier Ltd. Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first step in the common pathway for the biosynthesis of branched-chain amino acids is catalysed by acetohydroxyacid synthase (AHAS; EC 4.1.3.18). The enzyme is found in plants, fungi and bacteria, and is regulated by controls on transcription and translation, and by allosteric modulation of catalytic activity. It has long been known that the bacterial enzyme is composed of two types of subunit, and a similar arrangement has been found recently for the yeast and plant enzymes. One type of subunit contains the catalytic machinery, whereas the other has a regulatory function. Previously, we have shown [Pang and Duggleby (1999) Biochemistry 38, 5222-5231] that yeast AHAS can be reconstituted from its separately purified subunits. The, reconstituted enzyme is inhibited by valine, and ATP reverses this inhibition. In the present work, we further characterize the structure and the regulatory properties of reconstituted yeast AHAS. High phosphate concentrations are required for reconstitution and it is shown that these conditions are necessary for physical association between the catalytic and regulatory subunits. It is demonstrated by CD spectral changes that ATP binds to the regulatory subunit alone, most probably as MgATP. Neither valine nor MgATP causes dissociation of the regulatory subunit from the catalytic subunit. The specificity of valine inhibition and MgATP activation are examined and it is found that the only effective analogue of either regulator of those tested is the non-hydrolysable ATP mimic, adenosine 5 '-[beta,gamma -imido]triphosphate. The kinetics of regulation are studied in detail and it is shown that the activation by MgATP depends on the valine concentration in a complex manner that is consistent with a proposed quantitative model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The branched-chain amino acids are synthesized by plants, fungi and microorganisms, but not by animals. Therefore, the enzymes of this pathway are potential target sites for the development of antifungal agents, antimicrobials and herbicides. Most research has focused upon the first enzyme in this biosynthetic pathway, acetohydroxyacid synthase (AHAS) largely because it is the target site for many commercial herbicides. In this review we provide a brief overview of the important properties of each enzyme within the pathway and a detailed summary of the most recent AHAS research, against the perspective of work that has been carried out over the past 50 years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diflavo-protein NADPH cytochrome P450 reductase (CPR) is the key electron transfer partner for all drug metabolizing cytochrome P450 enzymes in humans. The protein delivers, consecutively, two electrons to the heme active site of the P450 in a carefully orchestrated process which ultimately leads to the generation of a high valent oxo-heme moiety. Despite its central role in P450 function, no direct electrochemical investigation of the purified protein has been reported. Here we report the first voltammetric study of purified human CPR where responses from both the FMN and FAD cofactors have been identified using both cyclic and square wave voltammetry. For human CPR redox responses at -2 and -278 mV (with a ratio of 1e(-):3e(-)) vs NHE were seen at pH 7.9 while the potentials for rat CPR at pH 8.0 were -20 and -254 mV. All redox responses exhibit a pH dependence of approximately -59 mV/pH unit consistent with proton coupled electron transfer reactions of equal stoichiometry. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated whether red cell 2,3-diphosphoglycerate (2,3-DPG) concentrations are reduced in critical illness, whether acidaemia, hypophosphataemia or anaemia influence 2,3-DPG, and whether there is any net effect on in vivo P50. Twenty healthy, non-smoking, male volunteers were compared with 20 male intensive care patients with APACHE 2 scores > 20 on the preceding day. Those transfused in this time were excluded. Venous red cell 2,3-DPG concentrations were measured in both groups. In the patient group, routine multichannel biochemical profile and arterial blood gas analysis were also performed and in vivo P50 calculated. The mean 2,3-DPG concentration was significantly lower in the patient group than in the controls (4.2 +/-1.3 mmoll/l vs 4.9 +/-0.5 mmol/l, P=0.016). The patients were well oxygenated (lowest arterial PO2=75 mm Hg) and showed a tendency to acidaemia (median pH 7.37, range 7.06 to 7.48) and anaemia (median haemoglobin concentration 113 g/l, range 89 to 154 g/l). By linear regression of patient data, pH had a significant effect on 2,3-DPG concentrations (r=0.6, P=0.011). Haemoglobin and phosphate concentrations did not, but there were few abnormal phosphate values. There was no correlation between 2,3-DPG concentrations and in vivo P50 (r(2) less than or equal to 0.08). We conclude that 2,3-DPG concentrations were reduced in a broad group of critically ill patients. Although this would normally reduce the P50, the reduction was primarily linked with acidaemia, which increases the P50. Overall, there was no net effect on the P50 and thus no affinity-related decrease in tissue oxygenation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A glasshouse study was undertaken to determine if the zeolite mineral clinoptilolite from an Australian deposit in combination with rock phosphate (RP) could significantly enhance the uptake of P by sunflowers. The zeolite/RP combination was intended to act as an exchange-fertiliser, with Ca2+ exchanging onto the zeolite in response to plant uptake of nutrient cations (NH4+ or K) enhancing the dissolution of the RP. A reactive RP (Sechura) and a relatively non-reactive RP (Duchess) were examined. Zeolite was used in Ca2+-, K+- and NH4+-saturated forms at ratios of 3.5:1 and 7:1 with RP; Ca2+-zeolite was considered the control, with exchange-induced dissolution possible from K+-and NH4+-zeolite, The zeolite/RP mixture was applied as a vertical band adjacent to the sunflower seedling. In addition, N was supplied as urea in an effort to determine if RP dissolution resulted from H+ release by nitrification. Phosphorus supply from the zeolite/RP system was compared with an available P source (KH2PO4). The experiment clearly demonstrated greatly enhanced plant uptake of P from RP when applied in combination with NH4-zeolite, though the P uptake was lower than that from the soluble P source. The zeolite/RP interaction was much more effective with the reactive R-P than the non-reactive material, Within the NH4+-zeolite/RP band, root proliferation was greatly increased, as would be expected in an exchange-fertiliser system. The K+-zeolite system did not produce a significantly greater yield than the Ca2+-zeolite control, probably because adequate K+ supply from the basal application reduced uptake within the zeolite/RP band, thus reducing the extent of exchange-induced dissolution. Nevertheless, increased root proliferation within the band was observed, implying that exchange-induced dissolution may also be possible from this system. The zeolite/RP system offers the considerable advantage of P release in response to plant demand and is unique in this regard. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although cytokinins (CKs) are widely thought to have a role in promoting shoot branching, there is little data supporting a causative or even a correlative relationship between endogenous CKs and timing of bud outgrowth. We previously showed that lateral bud CK content increased rapidly following shoot decapitation. However, it is not known whether roots are the source of this CK. Here, we have used shoot decapitation to instantaneously induce lateral bud release in chickpea seedlings. This treatment rapidly alters rate and direction of solvent and solute (including CK) trafficking, which may be a passive signalling mechanism central to initiation of lateral bud release. To evaluate changes in xylem transport, intact and decapitated plants were infiltrated with [H-3]zeatin riboside ([H-3]ZR), a water-soluble blue dye or [H-3]H2O by injection into the hypocotyl. All three tracers were recovered in virtually all parts of the shoot within I h of injection. In intact plants, solute accumulation in the lateral bud at node 1 was significantly less than in the adjacent stipule and nodal tissue. In decapitated plants, accumulation of [H-3]ZR and of blue dye in the same bud position was increased 3- to 10-fold relative to intact plants, whereas content of [H-3]H2O was greatly reduced indicating an increased solvent throughput. The stipule and cut stem, predicted to have high evapotranspiration rates, also showed increased solute content accompanied by enhanced depletion of [H-3]H2O. To assess whether metabolism modifies quantities of active CK reaching the buds, we followed the metabolic fate of [H-3]ZR injected at physiological concentrations. Within 1 h, 80-95% of [H-3]ZR was converted to other active CKs (mainly zeatin riboside-5'phosphate (ZRMP) and zeatin (Z)), other significant, but unconfirmed metabolites some of which may be active (O-acetylZR, O-acetylZRMP and a compound correlated with sites of high CK-concentrations) and inactive catabolites (adenosine, adenine, 5'AMP and water). Despite rapid metabolic degradation, the total active label, which was indicative of CK concentration in buds, increased rapidly following decapitation. It can be inferred that xylem sap CKs represent one source of active CKs appearing in lateral buds after shoot decapitation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titanium phosphate is currently a promising material for proton exchange membrane fuel cells applications (PEMFC) allowing for operation at high temperature conditions. In this work, titanium phosphate was synthesized from tetra iso-propoxide (TTIP) and orthophosphoric acid (H3PO4) in different ratios by a sol gel method. High BET surface areas of 271 m(2).g(-1) were obtained for equimolar Ti:P samples whilst reduced surface areas were observed by varying the molar ratio either way. Highest proton conductivity of 5.4 x 10(-2) S.cm(-1) was measured at 20 degrees C and 93% relative humidity (RH). However, no correlation was observed between surface area and proton conductivity. High proton conductivity was directly attributed to hydrogen bonding in P-OH groups and the water molecules retained in the sample structure. The proton conductivity increased with relative humidity, indicating that the Grotthuss mechanism governed proton transport. Further, sample Ti/P with 1:9 molar ratio showed proton conductivity in the order of 10(-1) S.cm(-1) (5% RH) and similar to 1.6x10(-2) S.cm(-1) (anhydrous condition) at 200 degrees C. These proton conductivities were mainly attributed to excess acid locked into the functionalized TiP structure, thus forming ionisable protons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Environmental issues due to increases in emissions of air pollutants and greenhouse gases are driving the development of clean energy delivery technologies such as fuel cells. Low temperature Proton Exchange Membrane Fuel Cells (PEMFC) use hydrogen as a fuel and their only emission is water. While significant advances have been made in recent years, a major limitation of the current technology is the cost and materials limitations of the proton conduction membrane. The proton exchange membrane performs three critical functions in the PEMFC membrane electrode assembly (MEA): (i) conduction of protons with minimal resistance from the anode (where they are generated from hydrogen) to the cathode (where they combine with oxygen and electrons, from the external circuit or load), (ii) providing electrical insulation between the anode and cathode to prevent shorting, and (iii) providing a gas impermeable barrier to prevent mixing of the fuel (hydrogen) and oxidant. The PFSA (perfluorosulphonic acid) family of membranes is currently the best developed proton conduction membrane commercially available, but these materials are limited to operation below 100oC (typically 80oC, or lower) due to the thermochemical limitations of this polymer. For both mobile and stationary applications, fuel cell companies require more durable, cost effective membrane technologies capable of delivering enhanced performance at higher temperatures (typically 120oC, or higher. This is driving research into a wide range of novel organic and inorganic materials with the potential to be good proton conductors and form coherent membranes. There are several research efforts recently reported in the literature employing inorganic nanomaterials. These include functionalised silica phosphates [1,2], fullerene [3] titania phosphates [4], zirconium pyrophosphate [5]. This work addresses the functionalisation of titania particles with phosphoric acid. Proton conductivity measurements are given together with structural properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Six men were studied during four 30-s all-out exercise bouts on an air-braked cycle ergometer. The first three exercise bouts were separated by 4 min of passive recovery; after the third bout, subjects rested for 4 min, exercised for 30 min at 30-35% peak O-2 consumption, and rested for a further 60 min before completing the fourth exercise bout. Peak power and total work were reduced (P < 0.05) during bout 3 [765 +/- 60 (SE) W; 15.8 +/- 1.0 kJ] compared with bout 1 (1,168 +/- 55 mT, 23.8 +/- 1.2 kJ), but no difference in exercise performance was observed between bouts 1 and 4 (1,094 +/- 64 W, 23.2 +/- 1.4 kJ). Before bout 3, muscle ATP, creatine phosphate (CP), glycogen, pH, and sarcoplasmic reticulum (SR) Ca2+ uptake were reduced, while muscle lactate and inosine 5'-monophosphate were increased. Muscle ATP and glycogen before bout 4 remained lower than values before bout I (P < 0.05), but there were no differences in muscle inosine 5'-monophosphate, lactate, pH, and SR Ca2+ uptake. Muscle CP levels before bout 4 had increased above resting levels. Consistent with the decline in muscle ATP were increases in hypoxanthine and inosine before bouts 3 and 4. The decline in exercise performance does not appear to be related to a reduction in muscle glycogen. Instead, it may be caused by reduced CP availability, increased H+ concentration, impairment in SR function, or some other fatigue-inducing agent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In vitro, cytosolic human ketone reductases catalyse the stereospecific (i.e. >99%) formation of S(-) reduced haloperidol (RHP) from haloperidol (HP). Whether this situation is reflected in patients taking the drug is unknown. In this study in nine patients taking HP, only 73.2+/-18.2% of the RHP excreted in urine was the S(-) enantiomer. Thus, enzymes other than cytosolic ketone reductases must be responsible for the formation of the minor enantiomer. (C) 1998 Elsevier Science B.V./ECNP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The redox proteins that incorporate a thioredoxin fold have diverse properties and functions. The bacterial protein-folding factor DsbA is the most oxidizing of the thioredoxin family. DsbA catalyzes disulfide-bond formation during the folding of secreted proteins, The extremely oxidizing nature of DsbA has been proposed to result from either domain motion or stabilizing active-site interactions in the reduced form. In the domain motion model, hinge bending between the two domains of DsbA occurs as a result of redox-related conformational changes. Results: We have determined the crystal structures of reduced and oxidized DsbA in the same crystal form and at the same pH (5.6). The crystal structure of a lower pH form of oxidized DsbA has also been determined (pH 5.0). These new crystal structures of DsbA, and the previously determined structure of oxidized DsbA at pH 6.5, provide the foundation for analysis of structural changes that occur upon reduction of the active-site disulfide bond. Conclusions: The structures of reduced and oxidized DsbA reveal that hinge bending motions do occur between the two domains. These motions are independent of redox state, however, and therefore do not contribute to the energetic differences between the two redox states, instead, the observed domain motion is proposed to be a consequence of substrate binding. Furthermore, DsbA's highly oxidizing nature is a result of hydrogen bond, electrostatic and helix-dipole interactions that favour the thiolate over the disulfide at the active site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structures of free, substrate-bound and product-bound forms of Escherichia coli xanthine-guanine phosphoribosyltransferase (XGPRT) have been determined by X-ray crystallography. These are compared with the previously determined structure of magnesium and sulphate-bound XPRT. The structure of free XGPRT at 2.25 Angstrom resolution confirms the flexibility of residues in and around a mobile loop identified in other PRTases and shows that the cis-peptide conformation of Arg37 at the active site is maintained in the absence of bound ligands. The structures of XGPRT complexed with the purine base substrates guanine or xanthine in combination with cPRib-PP, an analog of the second substrate PRib-PP, have been solved to 2.0 Angstrom resolution. In these two structures the disordered phosphate-binding loop of uncomplexed XGPRT becomes ordered through interactions with the 5'-phosphate group of cPRib-PP. The cyclopentane ring of cPRib-PP has the C3 exo pucker conformation, stabilised by the cPRib-PP-bound Mg2+. The purine base specificity of XGPRT appears to be due to water-mediated interactions between the 2-exocyclic groups of guanine or xanthine and side-chains of Glu136 and Asp140, as well as the main-chain oxygen atom of Ile135. Asp92, together with Lys115, could help stabilise the N7-protonated tautomer of the incoming base and could act as a general base to remove the proton from N7 .when the nucleotide product is formed. The 2.6 Angstrom resolution structure of XGPRT complexed with product GMP is similar to the substrate-bound complexes. However, the ribose ring of GMP is rotated by similar to 24 degrees compared with the equivalent ring in cPRib-PP. This rotation results in the loss of all interactions between the ribosyl group and the enzyme in the product complex. (C) 1998 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of aspirin as an anti-platelet drug is limited by its propensity to induce gastric injury and by its adverse effect on vascular prostacyclin formation. Two phenolic non-steroidal anti-inflammatory drugs (salicyclic acid and diflunisal) were modified by esterification with a series of O-acyl moieties. The short-term ulcerogenic in vitro and in vivo anti-platelet properties, pharmacodynamic profiles, and extent of hepatic extraction of these phenolic esters were compared with aspirin (acetylsalicylic acid). The more lipophilic esters (longer carbon chain length in O-acyl group) show significantly less gastrotoxicity in stressed rats than does aspirin after a single oral dose. The in vitro and in vivo anti-platelet studies show that these phenolic esters inhibited (1) arachidonate-triggered human platelet aggregation and (2) thrombin-stimulated rat serum thromboxane Ag production by platelets in the clotting process almost as effectively as aspirin. The hepatic extractions of these O-acyl derivatives are significantly higher than those of aspirin. The pharmacodynamic studies show that these O-acyl derivatives of salicylic acid and diflunisal probably bind to, or combine with, the same site on the platelet cyclooxygenase as aspirin. Replacing the O-acetyl group with longer chain O-acyl moiety in this series of phenolic esters markedly reduced the potential of these agents to induce short-term gastric injury but did not lessen their activity as inhibitors of platelet aggregation. These non-acetyl salicylates may therefore represent a novel class of anti-platelet drugs with less ulcerogenic potential.