74 resultados para creek monitoring
Resumo:
Six units are distinguished in the Permian sequence, and are considered to belong to the Sakmarian and Artinskian stages.
Resumo:
This was an early pre-Catalyst collaboration about developing reflexivity in student engineers. It was funded by (then) CUTSD.
Resumo:
Stable carbon isotope analyses of wool staples provided insight into the vegetation consumed by sheep at a temporal resolution not previously studied. Contemporary Australian and historic South African samples dating back to 1916 were analyzed for their stable carbon isotope ratio, a proxy for the proportion of C-3 and C-4 plant species consumed by animals. Sheep sample vegetation continuously throughout a year, and as their wool grows it integrates and stores information about their diet. In subtropical and tropical rangelands the majority of grass species are C-4. Since sheep prefer to graze, and their wool is an isotopic record of their diet, we now have the potential to develop a high resolution index to the availability of grass from a sheep's perspective. Isotopic analyses of wool suggest a new direction for monitoring grazing and for the reconstruction of past vegetation changes, which will make a significant contribution to traditional rangeland ecology and management. It is recommended that isotopic and other analyses of wool be further developed for use in rangeland monitoring programs to provide valuable feedback for land managers.
Resumo:
In this paper, a theory of charismatic relationships is examined with reference to the follower's personal characteristics. It is argued that a leader's charismatic message and personal charisma occupy different roles for individuals who vary in national culture and level of self-monitoring. In an empirical test of the theory, 387 undergraduates of Chinese and Australian cultural backgrounds completed self-monitoring and charismatic leadership instruments. High self-monitors placed more importance on personal charisma than the charismatic message. Chinese participants relied more than the Australians on the charismatic message, although this preference depended on self-monitoring orientation. These results indicate the influence of both individual-and cultural-level variables on leader-member relationships, and the need to consider these effects in future developments of a theory of charismatic leadership.
Resumo:
Two major factors are likely to impact the utilisation of remotely sensed data in the near future: (1)an increase in the number and availability of commercial and non-commercial image data sets with a range of spatial, spectral and temporal dimensions, and (2) increased access to image display and analysis software through GIS. A framework was developed to provide an objective approach to selecting remotely sensed data sets for specific environmental monitoring problems. Preliminary applications of the framework have provided successful approaches for monitoring disturbed and restored wetlands in southern California.
Resumo:
In order to evaluate the capability of H-1 MRS to monitor longitudinal changes in subjects with probable Alzheimer's disease (AD), the temporal stability of the metabolite measures N-acetylaspartate and N-acetylas-partylglutamate (NA), total Creatine (Cr), myo-Inositol (mI), total Choline (Chol), NA/Cr, mI/Cr, Chol/Cr and NA/mI were investigated in a cohort of normal older adults. Only the metabolite measures NA, mi, Cr, NA/Cr, mI/Cr, and NA/mI were found to be stable after a mean interval of 260 days. Relative and absolute metabolite measures from a cohort of patients with probable AD were subsequently compared with data from a sample of normal older adult control subjects, and correlated with mental status and the degree of atrophy in the localized voxel. Concentrations of NA, NA/Cr, and NA/mI were significantly reduced in the AD group with concomitant significant increases in mi and mI/Cr. There were no differences between the two groups in measures of Cr, Chol, or Chol/Cr. Significant correlations between mental status as measured by the Mini-Mental State Examination and NA/mI, mI/Cr and NA were found. These metabolite measures were also significantly correlated with the extent of atrophy (as measured by CSF and GM composition) in the spectroscopy voxel. (C) 1999 Elsevier Science Inc.
Resumo:
The Montreal Process indicators are intended to provide a common framework for assessing and reviewing progress toward sustainable forest management. The potential of a combined geometrical-optical/spectral mixture analysis model was assessed for mapping the Montreal Process age class and successional age indicators at a regional scale using Landsat Thematic data. The project location is an area of eucalyptus forest in Emu Creek State Forest, Southeast Queensland, Australia. A quantitative model relating the spectral reflectance of a forest to the illumination geometry, slope, and aspect of the terrain surface and the size, shape, and density, and canopy size. Inversion of this model necessitated the use of spectral mixture analysis to recover subpixel information on the fractional extent of ground scene elements (such as sunlit canopy, shaded canopy, sunlit background, and shaded background). Results obtained fron a sensitivity analysis allowed improved allocation of resources to maximize the predictive accuracy of the model. It was found that modeled estimates of crown cover projection, canopy size, and tree densities had significant agreement with field and air photo-interpreted estimates. However, the accuracy of the successional stage classification was limited. The results obtained highlight the potential for future integration of high and moderate spatial resolution-imaging sensors for monitoring forest structure and condition. (C) Elsevier Science Inc., 2000.
Resumo:
Urbanization and the ability to manage for a sustainable future present numerous challenges for geographers and planners in metropolitan regions. Remotely sensed data are inherently suited to provide information on urban land cover characteristics, and their change over time, at various spatial and temporal scales. Data models for establishing the range of urban land cover types and their biophysical composition (vegetation, soil, and impervious surfaces) are integrated to provide a hierarchical approach to classifying land cover within urban environments. These data also provide an essential component for current simulation models of urban growth patterns, as both calibration and validation data. The first stages of the approach have been applied to examine urban growth between 1988 and 1995 for a rapidly developing area in southeast Queensland, Australia. Landsat Thematic Mapper image data provided accurate (83% adjusted overall accuracy) classification of broad land cover types and their change over time. The combination of commonly available remotely sensed data, image processing methods, and emerging urban growth models highlights an important application for current and next generation moderate spatial resolution image data in studies of urban environments.
Resumo:
Three experiments explored the effectiveness of continuous auditory displays, or sonifications, for conveying information about a simulated anesthetized patient's respiration. Experiment 1 established an effective respiratory sonification. Experiment 2 showed an effect of expertise in the use of respiratory sonification and revealed that some apparent differences in sonification effectiveness could be accounted for by response bias. Experiment 3 showed that sonification helps anesthesiologists to maintain high levels of awareness of the simulated patient's state while performing other tasks more effectively than when relying upon visual monitoring of the simulated patient state. Overall, sonification of patient physiology beyond traditional pulse oximetry appears to be a viable and useful adjunct to visual monitors. Actual and potential applications of this research include monitoring in a wide variety of busy critical care contexts.
Resumo:
Current design procedures for Subsurface Flow (SSF) Wetlands are based on the simplifying assumptions of plug flow and first order decay of pollutants. These design procedures do yield functional wetlands but result in over-design and inadequate descriptions of the pollutant removal mechanisms which occur within them. Even though these deficiencies are often noted, few authors have attempted to improve modelling of either flow or pollutant removal in such systems. Consequently the Oxley Creek Wetland, a pilot scale SSF wetland designed to enable rigorous monitoring, has recently been constructed in Brisbane, Australia. Tracer studies have been carried out in order to determine the hydraulics of this wetland prior to commissioning it with sealed sewage. The tracer studies will continue during the wetland's commissioning and operational phases. These studies will improve our understanding of the hydraulics of newly built SSF wetlands and the changes brought on by operational factors such as biological films and wetland plant root structures. Results to date indicate that the flow through the gravel beds is not uniform and cannot be adequately modelled by a single parameter, plug flow with dispersion, model. We have developed a multiparameter model, incorporating four plug flow reactors, which provides a better approximation of our experimental data. With further development this model will allow improvements to current SSF wetland design procedures and operational strategies, and will underpin investigations into the pollutant removal mechanisms at the Oxley Creek Wetland. (C) 1997 IAWQ. Published by Elsevier Science Ltd.