17 resultados para chigger mites
Resumo:
The gene content of a mitochondrial (mt) genome, i.e., 37 genes and a large noncoding region (LNR), is usually conserved in Metazoa. The arrangement of these genes and the LNR is generally conserved at low taxonomic levels but varies substantially at high levels. We report here a variation in mt gene content and gene arrangement among chigger mites of the genus Leptotrombidium. We found previously that the mt genome of Leptotrombidium pallidum has an extra gene for large-subunit rRNA (rrnL), a pseudo-gene for small-subunit rRNA (PrrnS), and three extra LNRs, additional to the 37 genes and an LNR typical of Metazoa. Further, the arrangement of mt genes of L. pallidum differs drastically from that of the hypothetical ancestor of the arthropods. To find to what extent the novel gene content and gene arrangement occurred in Leptotrombidium, we sequenced the entire or partial mt genomes of three other species, L. akamushi, L. deliense, and L. fletcheri. These three species share the arrangement of all genes with L. pallidum, except trnQ (for tRNA-glutamine). Unlike L. pallidum, however, these three species do not have extra rrnL or PrrnS and have only one extra LNR. By comparison between Leptotrombidium species and the ancestor of the arthropods, we propose that (1) the type of mt genome present in L. pallidum evolved from the type present in the other three Leptotrombidium species, and (2) three molecular mechanisms were involved in the evolution of mt gene content and gene arrangement in Leptotrombidium species.
Resumo:
To better understand the evolution of mitochondrial (mt) genomes in the Acari (mites and ticks), we sequenced the mt genome of the chigger mite, Leptotrombidium pallidum (Arthropoda: Acari: Acariformes). This genome is highly rearranged relative to that of the hypothetical ancestor of the arthropods and the other species of Acari studied. The mt genome of L. pallidum has two genes for large subunit rRNA, a pseudogene for small subunit rRNA, and four nearly identical large noncoding regions. Nineteen of the 22 tRNAs encoded by this genome apparently lack either a T-arm or a D-arm. Further, the mt genome of L. pallidum has two distantly separated sections with identical sequences but opposite orientations of transcription. This arrangement cannot be accounted for by homologous recombination or by previously known mechanisms of mt gene rearrangement. The most plausible explanation for the origin of this arrangement is illegitimate inter-mtDNA recombination, which has not been reported previously in animals. In light of the evidence from previous experiments on recombination in nuclear and mt genomes of animals, we propose a model of illegitimate inter-mtDNA recombination to account for the novel gene content and gene arrangement in the mt genome of L. pallidum.
Resumo:
The Linotetranidae (Acari: Tetranychoidea) is a poorly known group of cryptic false spider mites associated with grasses and sedges. We review the family at the world level, provide the first phylogenetic analysis of the family, and describe the first Australian representatives: Austrolinus, gen. nov. and two new species: A. arenulus and A. kinnearae. Linotetranidae is redefined, and keys are provided for the families of the Tetranychoidea, and for all described genera and species of Linotetranidae.
Resumo:
Predatory mites (Acari: Mesostigmata) on tree trunks without significant epiphytic growth in a subtropical rainforest in Eastern Australia were assessed for habitat specificity (i.e. whether they are tree trunk specialists or occupying other habitats) and the influence of host tree and bark structure on their abundance, species richness and species composition. The trunks of nine tree species from eight plant families representing smooth, intermediate and rough bark textures were sampled using a knockdown insecticide spray. In total, 12 species or morphospecies of Mesostigmata (excluding Uropodina sensu stricto) were collected, most of which are undescribed. Comparison with collections from other habitats indicates that epicorticolous Mesostigmata are mainly represented by suspended soil dwellers (six species), secondarily by generalists (four species) and a bark specialist (one species). A typical ground-dwelling species was also found but was represented only by a single individual. In terms of abundance, 50.5% of individuals were suspended soil dwellers, 40.7% bark specialists, and 8.3% generalists. Host species and bark roughness had no significant effect on abundance or species richness. Furthermore, there was no clear effect on species composition. The distribution of the most frequently encountered species suggests that most mesostigmatid mites living on bark use many or most rainforest tree species, independent of bark roughness. These findings support the hypothesis that some epicorticolous Mesostigmata use tree trunks as 'highways' for dispersing between habitat patches, while others use it as a permanent habitat.
Resumo:
The biology and phenology of the eriophyid mite, Floracarus perrepae Knihinicki and Boczek,a potential biological control agent of Lygodium microphyllum (Cav.) R. Br., was studied in its native range - Queensland, Australia. F. perrepae forms leaf roll galls oil tile subpinnae of L. microphyllum. It has a simple biology, with females and males produced throughout the year. Tile Population was female biased at 10.5 to 1. The immature development time was 8.9 ± 0.1 and 7.0 ± 0.1 days; adult longevity was 30.6 ± 1.6 and 19.4 ± 1.2 days and mean fecundity per female was 54.5 ± 3.2 and 38.5 ± 1.6 eggs at 21 and 26 ° C, all respectively. Field studies showed that tile mite was active year round, with populations peaking when temperatures were cool and soil moisture levels were highest. Two species of predatory mites, Tarsonemus sp. and a species of Tydeidae, along with the pathogen Hirsutella thompsonii, had significant effects oil all life stages of F. perrepae. Despite high levels of predators and the pathogen, F. perrepae caused consistent damage to L. microphyllum at all the field sites over the entire 2 years of the study.
Resumo:
We inferred phylogeny among the three major lineages of the Acari ( mites) from the small subunit rRNA gene. Our phylogeny indicates that the Opilioacariformes is the sister-group to the Ixodida+Holothyrida, not the Ixodida+Mesostigmata+Holothyrida, as previously thought. Support for this relationship increased when sites with the highest rates of nucleotide substitution, and thus the greatest potential for saturation with nucleotide substitutions, were removed. Indeed, the increase in support ( and resolution) was despite a 70% reduction in the number of parsimony-informative sites from 408 to 115. This shows that rather than 'noisy' sites having no impact on resolution of deep branches, 'noisy' sites have the potential to obscure phylogenetic relationships. The arrangement, Ixodida+Holothyrida+Opilioacariformes, however, may be an artefact of long-branch attraction since relative-rate tests showed that the Mesostigmata have significantly faster rates of nucleotide substitution than other parasitiform mites. Thus, the fast rates of nucleotide substitution of the Mesostigmata might have caused the Mesostigmata to be attracted to the outgroup in our trees. We tested the hypothesis that the high rate of nucleotide substitution in some mites was related to their short generation times. The Acari species that have high nucleotide substitution rates usually have short generation times; these mites also tend to be more active and thus have higher metabolic rates than other mites. Therefore, more than one factor may affect the rate of nucleotide substitution in these mites.
Resumo:
Dr Ronald Vernon Southcott (1918–1998) was amongst the greatest of the Australian doctor-naturalists. His toxinological contributions included the description and naming of the box-jellyfish, Chironex fleckeri, the first definitive study (1950–1957) of the toxinology, taxonomy and biology of Australian scorpions; and the first observations in Australia of the introduced fiddleback spider, Loxosceles. His research into the medical effects of toxic fungi, poisonous plants and Australian insects was extensive. He was a founding member of the International Society on Toxinology and served on the Toxicon Editorial Board for more than 30 years. He also made extensive contributions to acarology, and to the taxonomy of mites, specifically the sub-families and genera of the Erythraeoidea. This prodigious output was achieved by one who, with the exception of war service (1942–1946), almost never travelled outside South Australia, was almost entirely self-funded and worked from his home laboratory. With Dr. P.D. Scott and C.J. Glover, he was also the authority on the fish of South Australia. Dr. Southcott was also a medical epidemiologist and senior medical administrator (1949–1978) with the Australian Commonwealth Department of Veterans’ Affairs. He served for 30 years as an Honorary Consultant in Toxicology to the Adelaide Children's Hospital. As a zoologist and botanist of astounding breadth, he worked indefatigably in a voluntary capacity for the South Australian Museum, of which he was Museum Board Chairman from 1974 to 1982. In the pantheon of the great doctor-naturalists who have worked in Australia, he stands with Robert Brown and Thomas Lane Bancroft.
Resumo:
Seven species of eriophyoid mites (Acari: Eriophyoidea) are known to attack sugarcane plants (Saccharum spp., Poaceae) and related grasses in various parts of the world, but except for unconfirmed reports of Aceria sacchari and Abacarus sacchari, Australia had been thought to be free of these pests. Herein, Abacarus queenslandiensis n. sp. (Eriophyidae), vagrant on leaf surfaces of sugarcane in Australia, is described. Also, Cathetacarus n. gen. is erected for the distinctive mite, Catarhinus spontaneae Mohanasundaram, 1984. In addition, a key to the eriophyoid mites known to occur on sugarcane plants in the world is given.
Resumo:
We describe the diversity of aquatic invertebrates colonising water-filled final voids produced by an open-cut coal mine near Moura, central Queensland. Ten disused pits that had been filled with water from < 1 year to 22 years prior to the survey and three nearby 'natural' water bodies were sampled in December 1998 and again in March 1999. All invertebrates collected were identified to family with the exception of oligochaetes, cladocerans, ostracods and copepods, which were identified to these coarser taxonomic levels. Sixty-two taxa were recorded from > 20 000 individuals. The greatest familial richness was displayed by the Insecta (33 families) followed by the mites (Acari) with 12 families. While natural water bodies held the greatest diversity, several mine pits were almost as rich in families. Classification analyses showed that natural sites tended to cluster together, but the groupings did not clearly exclude pit sites. Mining pits that supported higher diversity tended to be older and had lower salinity (< 2000 mu S/cm); however, salinity in all water bodies varied with rainfall conditions. We conclude that ponds formed in final voids at this mine have the potential to provide habitat for many invertebrate taxa typical of lentic inland water bodies in central Queensland.