28 resultados para biologically active molecules
Resumo:
Evidence indicates that cruciferous vegetables are protective against a range of cancers with glucosinolates and their breakdown products considered the biologically active constituents. To date, epidemiological studies have not investigated the intakes of these constituents due to a lack of food composition databases. The aim of the present study was to develop a database for the glucosinolate content of cruciferous vegetables that can be used to quantify dietary exposure for use in epidemiological studies of diet-disease relationships. Published food composition data sources for the glucosinolate content of cruciferous vegetables were identified and assessed for data quality using established criteria. Adequate data for the total glucosinolate content were available from eighteen published studies providing 140 estimates for forty-two items. The highest glucosinolate values were for cress (389 mg/100 g) while the lowest values were for Pe-tsai chinese cabbage (20 mg/100 g). There is considerable variation in the values reported for the same vegetable by different studies, with a median difference between the minimum and maximum values of 5.8-fold. Limited analysis of cooked cruciferous vegetables has been conducted; however, the available data show that average losses during cooking are approximately 36 %. This is the first attempt to collate the available literature on the glucosinolate content of cruciferous vegetables. These data will allow quantification of intakes of the glucosinolates, which can be used in epidemiological studies to investigate the role of cruciferous vegetables in cancer aetiology and prevention.
Resumo:
A bacterium (MJ-PV) previously demonstrated to degrade the cyanobacterial toxin microcystin LR, was investigated for bioremediation applications in natural water microcosms and biologically active slow sand filters. Enhanced degradation of microcystin LR was observed with inoculated (1 x 10(6) cell/mL) treatments of river water dosed with microcystin LR (> 80% degradation within 2 days) compared to uninoculated controls. Inoculation of MJ-PV at lower concentrations (1 x 10(2)-1 x 10(5)cells/mL) also demonstrated enhanced microcystin LR degradation over control treatments. Polymerase chain reactions (PCR) specifically targeting amplification of 16S rDNA of MJ-PV and the gene responsible for initial degradation of microcystin LR (mlrA) were successfully applied to monitor the presence of the bacterium in experimental trials. No amplified products indicative of an endemic MJ-PV population were observed in uninoculated treatments indicating other bacterial strains were active in degradation of microcystin LR, Pilot scale biologically active slow sand filters demonstrated degradation of microcystin LR irrespective of MJ-PV bacterial inoculation. PCR analysis detected the MJ-PV population at all locations within the sand filters where microcystin degradation was measured. Despite not observing enhanced degradation of microcystin LR in inoculated columns compared to uninoculated column, these studies demonstrate the effectiveness of a low-technology water treatment system like biologically active slow sand filters for removal of microcystins from reticulated water supplies. Crown Copyright (c) 2006 Published by Elsevier Ltd. All rights reserved.
Resumo:
Investigations of a southern Australian marine sponge, Oceanapia sp., have yielded two new methyl branched bisthiocyanates, thiocyanatins D-1 (3a) and D-2 (3b), along with two new thiocarbamate thiocyanates, thiocyanatins E-l (4a) and E-2 (4b). The new thiocyanatins belong to a rare class of bioactive marine metabolite previously only represented by thiocyanatins A-C (1, 2a/b). Structures were assigned on the basis of detailed spectroscopic analysis, with comparisons to the known bisthiocyanate thiocyanatin A (1) and synthetic model compounds (5-7). The thiocyanatins exhibit potent nematocidal activity, and preliminary structure-activity relationship investigations have confirmed key characteristics of the thiocyanatin pharmacophore.
Resumo:
Two new antibacterial agents, rugulotrosin A (1) and B (2), were obtained from cultures of a Penicillium sp. isolated from soil samples acquired near Sussex Inlet, New South Wales, Australia. Rugulotrosin A (1) is a chiral symmetric dimer, and its relative stereostructure was determined by spectroscopic and X-ray crystallographic analysis. Rugulotrosin B (2) is a chiral asymmetric dimer isomeric with 1. Its structure was determined by spectroscopic analysis with comparison to the co-metabolite 1 and previously reported fungal metabolites. Both rugulotrosins A and B displayed significant antibacterial activity against Bacillus subtilis, while rugulotrosin A was also strongly active against Enterococcus faecalis and B. cereus.
Resumo:
Three new aromatic butenolides, gymnoascolides A-C (1-3), have been isolated from the Australian soil ascomycete Gymnoascus reessii and assigned structures on the basis of detailed spectroscopic analysis. The absolute configurations of gymnoascolides B (2) and C (3) at C-5 were solved using a combination of chemical derivatization and quantum chemical simulations.
Resumo:
Peptidyl privileged structures have been widely used by many groups to discover biologically active molecules. In this context, privileged substructures are used as hydrophobic anchors, to which peptide functionality is appended to gain specificity. Utilization of this concept has led to the discovery of many different active compounds at a wide range of biological receptors. A synthetic approach to these compounds has been developed on a safety-catch linker that allows rapid preparation of large libraries of these molecules. Importantly, amide bond formation/cleavage through treatment with amines is the final step; it is a linker strategy that allows significant diversification to be easily incorporated, and it only requires the inclusion of an amide bond. In addition, chemistry has been developed that permits the urea moiety to be inserted at the N-terminus of the peptide, allowing the same set of amines (either privileged substructures or amino acid analogues) to be used at both the N- and C-termini of the molecule. To show the robustness of this approach, a small library of peptidyl privileged structures were synthesized, illustrating that large combinatorial libraries can be synthesized using these technologies.
Resumo:
An Australian isolate of Penicillium striatisporum collected near Shalvey, New South Wales, exhibited selective antifungal activity against Candida albicans versus Saccharomyces cerevisiae. Bioassay-directed fractionation yielded members of the rare class of fungal metabolites known as the calbistrins. These included a new example of this structure class, calbistrin E (1), as well as the known polyenes calbistrin C (2) and deformylcalbistrin A (3). Also recovered from P. striatisporum were new triene and butenolide acids, striatisporin A (4) and striatisporolide A (5), together with the known fungal metabolites versiol (6) and (+)-hexylitaconic acid (7). Structures for all metabolites were determined by detailed spectroscopic analysis.
Resumo:
Obesity and the metabolic syndrome have both reached pandemic proportions. Together they have the potential to impact on the incidence and severity of cardiovascular pathologies, with grave implications for worldwide health care systems. The metabolic syndrome is characterized by visceral obesity, insulin resistance, hypertension, chronic inflammation, and thrombotic disorders contributing to endothelial dysfunction and, subsequently, to accelerated atherosclerosis. Obesity is a key component in development of the metabolic syndrome and it is becoming increasingly clear that a central factor in this is the production by adipose cells of bioactive substances that directly influence insulin sensitivity and vascular injury. In this paper, we review advances in the understanding of biologically active molecules collectively referred to as adipokines and how dysregulated production of these factors in obese states mediates the pathogenesis of obesity associated metabolic syndrome.
Resumo:
The phosphosulfomannan 1 (PI-88) is a mixture of highly sulfated oligosaccharides that is currently undergoing clinical evaluation in cancer patients. As well as it's anticancer properties, 1 displays a number of other interesting biological activities. A series of analogues of 1 were synthesized with a single carbon (pentasaccharide) backbone to facilitate structural characterization and interpretation of biological results. In a fashion similar to 1, all compounds were able to inhibit heparanase and to bind tightly to the proangiogenic growth factors FGF-1, FGF-2, and VEGF. The compounds also inhibited the infection of cells and cell-to-cell spread of herpes simplex virus (HSV-1). Preliminary pharmacokinetic data indicated that the compounds displayed different pharmacokinetic behavior compared with 1. Of particular note was the n-octyl derivative, which was cleared 3 times less rapidly than 1 and may provide increased systemic exposure.
Resumo:
An Eryus sp. of marine sponge from the Great Australian Bight has yielded the first reported natural occurrence of a cyclonucleoside, N-3,5'-cycloxanthosine. The structure of N-3,5'-cycloxanthosine was confirmed by detailed spectroscopic analysis and total synthesis.
Resumo:
The new isoprenylated diketopiperazine roquefortine E (6) has been isolated from an Australian soil isolate of the ascomycete Gymnoascus reessii. The known fungal metabolite roquefortine C (1) was also recovered as the major antibacterial principle, and all structures were assigned by detailed spectroscopic analysis.
Resumo:
The isokibdelones are an unprecedented family of polyketides produced by an Australian isolate of a rare actinomycete, Kibdelosporangium sp. The structures of the isokibdelones were assigned by spectroscopic analysis and chemical interconversion. A proposed biosynthesis requires a novel molecular twist that generates an unprecedented heterocyclic system and differentiates the isokibdelones from their kibdelone co-metabolites. SAR analysis on the isokibdelones further defines the anticancer pharmacophore of these novel polyketides.
Resumo:
An Australian isolate of the soil ascomycete Gymnoascus reessii yielded a series of cytotoxic metabolites, including the known polyenylpyrroles rumbrin (1) and auxarconjugatin A (2), and the new rumbrin stereoisomer 12E-isorumbrin (3), as well as an unprecedented class of polyenylfurans exemplified by gymnoconjugatins A (4) and B (5). Structures were assigned with detailed spectroscopic analysis.
Resumo:
The vast majority of biologically active compounds will never be considered as potential drugs due to inherently poor bioavailability. This review discusses the progress in the development of chemical systems to improve the metabolic stability, absorption and physicochemical properties of potential drugs. Delivery systems that involve the conjugation of lipid and/or sugar moieties are highlighted, as well as novel methods of conjugation of these groups to drugs. The use of sugar molecules to target drugs to particular organs or cells is also discussed, as is the use of lipids in the growing area of gene delivery. This is an update of a previous review [1].
Resumo:
The complex mixture of biologically active peptides that constitute the venom of Conus species provides a rich source of ion channel neurotoxins. These peptides, commonly known as conotoxins, exhibit a high degree of selectivity and potency for different ion channels and their subtypes making them invaluable tools for unravelling the secrets of the nervous system. Furthermore, several conotoxin molecules have profound applications in drug discovery, with some examples currently undergoing clinical trials. Despite their relatively easy access by chemical synthesis, rapid access to libraries of conotoxin analogues for use in structure-activity relationship studies still poses a significant limitation. This is exacerbated in conotoxins containing multiple disulfide bonds, which often require synthetic strategies utilising several steps. This review will examine the structure and activity of some of the known classes of conotoxins and will highlight their potential as neuropharmacological tools and as drug leads. Some of the classical and more recent approaches to the chemical synthesis of conotoxins, particularly with respect to the controlled formation of disulfide bonds will be discussed in detail. Finally, some examples of structure-activity relationship studies will be discussed, as well as some novel approaches for designing conotoxin analogues.