21 resultados para Vascular Cell Adhesion Molecule-1
Resumo:
Mobilization is now used worldwide to collect large numbers of hematopoietic stem and progenitor cells (HSPCs) for transplantation. Although the first mobilizing agents were discovered largely by accident, discovery of more efficient mobilizing agents will require a better understanding of the molecular mechanisms responsible. During the past 5 years, a number of mechanisms have been identified, shedding new light on the dynamics of the hematopoietic system in vivo and on the intricate relationship between hematopoiesis, innate immunity, and bone. After briefly reviewing the mechanisms by which circulating HSPCs home into the bone marrow and what keeps them there, the current knowledge of mechanisms responsible for HSPC mobilization in response to hematopoietic growth factors such as granulocyte colony-stimulating factor, chemotherapy, chemokines, and polyanions will be discussed together with current strategies developed to further increase HSPC mobilization. (c) 2006 International Society for Experimental Hematology.
Resumo:
A novel, untransformed koala cell line (KC-1) was established by culturing koala conjunctival tissue in growth medium, which has permitted the study of the cell biology of this unique system. After the establishment of the KC-1 cell line, the cells were characterized by light microscopy, doubling time, and Western blot analysis. Light microscopy revealed that the cells have an epithelial morphology. Doubling times were significantly different (P < 0.015) depending on fetal calf serum (FCS) concentration (16.5 h in 10% FCS and 26.5 h in 2% FCS). Cells constricted while in suspension but were shown to attach to the coverslip (or flask) and flatten rapidly, less than 1 h after seeding. To confirm the epithelial nature of the cells, protein was extracted and Western blot analysis was performed. Subsequent probing with primary and secondary antibodies (monoclonal anticytokeratin clone C-11 IgG1 and anti-mouse IgG) revealed two bands at 45 and 52 kDa (compared against a protein molecular weight marker) that correspond to primary type I keratin and major type II keratin, respectively, expressed in simple epithelial cells. The koala cell line was adapted to grow continuously in Dulbecco modified Eagle medium containing 10% FCS for at least 30 passages. This unique cell line is an ideal toot for further investigation on koala cell biology and cytogenetics and for exploration of the pathophysiological mechanism of eye infections caused by different pathogens in koalas.
Resumo:
Classical cadherin adhesion molecules are fundamental determinants of tissue organization in both health and disease. Recent advances in understanding the molecular and cellular basis of cadherin function have revealed that these adhesion molecules serve as molecular couplers, linking cell surface adhesion and recognition to both the actin cytoskeleton and cell signalling pathways. We will review some of these developments. to provide an overview of progress in this rapidly-developing area of cell and developmental biology.
Resumo:
Adhesion of erythrocytes infected with the malaria parasite Plasmodium falciparum to human host receptors is a process associated with severe malarial pathology. A number of in vitro cell lines are available as models for these adhesive processes, including Chinese hamster ovary (CHO) cells which express the placental adhesion receptor chondroitin-4-sulphate (CSA) on their surface. CHO-745 cells, a glycosaminoglycan-negative mutant CHO cell line lacking CSA and other reported P. falciparum adhesion receptors, are often used for recombinant expression of host receptors and for receptor binding studies. In this study we show that P. falciparum-infected erythrocytes can be easily selected for adhesion to an endogenous receptor on the surface of CHO-745 cells, bringing into question the validity of using these cells as a tool for P. falciparum adhesin expression studies. The adhesive interaction between CHO-745 cells and parasitized erythrocytes described here is not mediated by the known P. falciparum adhesion receptors CSA, CD36, or ICAM-1. However, we found that CHO-745-selected parasitized erythrocytes bind normal human IgM and that adhesion to CHO-745 cells is inhibited by protein A in the presence of serum, but not in its absence, indicating a non-specific inhibitory effect. Thus, protein A, which has been used as an inhibitor for a recently described interaction between infected erythrocytes and the placenta, may not be an appropriate in vitro inhibitor for understanding in vivo adhesive interactions. (c) 2005 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Primary sensory neurons in the vertebrate olfactory systems are characterised by the differential expression of distinct cell surface carbohydrates. We show here that the histo-blood group H carbohydrate is expressed by primary sensory neurons in both the main and accessory olfactory systems while the blood group A carbohydrate is expressed by a subset of vomeronasal neurons in the developing accessory olfactory system. We have used both loss-of-function and gain-of-function approaches to manipulate expression of these carbohydrates in the olfactory system. In null mutant mice lacking the alpha(1,2)fucosyltransferase FUT1, the absence of blood group H carbohydrate resulted in the delayed maturation of the glomerular layer of the main olfactory bulb. In addition, ubiquitous expression of blood group A on olfactory axons in gain-of-function transgenic mice caused mis-routing of axons in the glomerular layer of the main olfactory bulb and led to exuberant growth of vomeronasal axons in the accessory olfactory bulb. These results provide in vivo evidence for a role of specific cell surface carbohydrates during development of the olfactory nerve pathways. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Macrophages are major effector cells of the innate immune system, and appropriate regulation of macrophage function requires the integration of multiple signalling inputs derived from the recognition of host factors (e.g. interferon-gamma/IFN gamma) and pathogen products (e.g. toll-like receptor/TLR agonists). The profound effects of IFN gamma pre-treatment (priming) on TLR-induced macrophage activation have long been recognised, but many of the mechanisms underlying the priming phenotype have only recently been identified. This review summarises the known mechanisms of integration between the IFN gamma and TLR signalling pathways. Synergy occurs at multiple levels, ranging from signal recognition to convergence of signals at the promoters of target genes. In particular, the cross-talk between the IFN gamma and LPS and CpG DNA signalling pathways is discussed. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
One way of controlling the activity of E-cadherin - a protein that is, simultaneously, a major cell-adhesion molecule, a powerful tumour suppressor, a determinant of cell polarity and a partner to the potent catenin signalling molecules - is to keep it on the move. During the past two decades, many insights into the fundamental role of E-cadherin in these processes have been garnered. Studies during the past five years have begun to reveal the importance of intracellular trafficking as a means of regulating the functions of E-cadherin. E-cadherin is trafficked to and from the cell surface by exocytic and multiple endocytic pathways. In this article, we survey the vesicle-trafficking machinery that is responsible for the sorting, transport, actin association and vesicle targeting of E-cadherin to regulate its movement and function during growth and development and, possibly, in cancer.
Resumo:
Primary olfactory neurons project axons from the olfactory neuroepithelium lining the nasal cavity to,the olfactory bulb in the brain. These axons grow within large mixed bundles in the olfactory nerve and then sort out into homotypic fascicles in the nerve fiber layer of the olfactory bulb before terminating in topographically fixed glomeruli. Carbohydrates expressed on the cell surface have been implicated in axon sorting within the nerve fiber layer. We have identified two novel subpopulations of primary olfactory neurons that express distinct alpha-extended lactoseries carbohydrates recognised by monoclonal antibodies LA4 and KH10. Both carbohydrate epitopes are present on novel glycoforms of the neural cell adhesion molecule, which we have named NOC-7 and NOC-8. Primary axon fasciculation is disrupted in vitro when interactions between these cell surface lactoseries carbohydrates and their endogenous binding molecules are inhibited by the LA4 and KH10 antibodies or lactosamine sugars. We report the expression of multiple members of the lactoseries binding galectin family in the primary olfactory system. In particular, galectin-3 is expressed by ensheathing cells surrounding nerve fascicles in the submucosa and nerve fiber layer, where it may mediate cross-linking of axons. Galectin-4, -7, and -8 are expressed by the primary olfactory axons as they grow from the nasal cavity to the olfactory bulb. A putative role for NOC-7 and NOC-8 in axon fasciculation and the expression of multiple galectins in the developing olfactory nerve suggest that these molecules may be involved in the formation of this pathway, particularly in the sorting of axons as they converge towards their target. (C) 2004Wiley-Liss, Inc.
Resumo:
In order to begin to understand how primary olfactory and vomeronasal organ (VNO) axons target specific regions of the olfactory bulb, we examined the sorting behaviour of these axons following neonatal unilateral olfactory bulbectomy. Bulbectomy induced widespread ipsilateral death of the primary olfactory and VNO neurons. After 4 weeks, many new sensory axons had re-grown into the cranial cavity and established a prominent plexus with evidence of dense tufts that were similar in gross appearance to glomeruli. Axons expressing the cell adhesion molecule OCAM, which normally innervate the ventrolateral and rostral halves of the main and accessory olfactory bulbs, respectively, sorted out and segregated from those axons not expressing this molecule within the plexus. In addition, VNO axons formed large discrete bundles that segregated from main olfactory axons within the plexus. Thus, VNO and primary olfactory axons as well as discrete subpopulations of both are able to sort out and remain segregated in the absence of the olfactory bulb. Sorting and convergence of axons therefore occur independently of the olfactory bulb and are probably attributable either to inherent properties of the axons themselves or to interactions between the axons and accompanying glial ensheathing cells.
Resumo:
Chronic alcohol abuse causes neurotoxicity and the development of tolerance and dependence. At the molecular level, however, knowledge about mechanisms underlying alcoholism remains limited. In this study we examined the superior frontal cortex, one of the most vulnerable brain regions, of alcoholics and of age- and gender-matched control subjects by means of antibody microarrays and Western blot analyses, and identified an up-regulation of beta-catenin level in the superior frontal cortex of alcoholics. Beta-catenin is the orthologue of the Drosophila armadillo segment polarity gene and a down stream component of the Wnt and Akt signaling pathway. Beta-catenin was identified as a cell adhesion molecule of the cadherin family which binds to the actin cytoskeleton. Genetic and biochemical analyses also found that beta-catenin can be translocated from the cytoplasm to the nucleus and acts as a transcription factor. In addition, electron microscopy performed on rat brain tissue sections has localized the beta-catenin and cadherin complexes to the synapses where they border the active zone. Because of the multi-functional role of beta-catenin in the nervous system, this study provides the premise for further investigation of mechanisms underlying the up-regulation of beta-catenin in alcoholism, which may have considerable pathogenic and therapeutic relevance.
Resumo:
Clustering of the T cell integrin, LFA-1, at specialized regions of intercellular contact initiates integrin-mediated adhesion and downstream signaling, events that are necessary for a successful immunological response. But how clustering is achieved and sustained is not known. Here we establish that an LFA-1-associated molecule, PTA-1, is localized to membrane rafts and binds the carboxyl-terminal domain of isoforms of the actin-binding protein 4.1G. Protein 4.1 is known to associate with the membrane-associated guanylate kinase homologue, human discs large. We show that the carboxyl-terminal peptide of PTA-1 also can bind human discs large and that the presence or absence of this peptide greatly influences binding between PTA-1 and different isoforms of 4.1G. T cell stimulation with phorbol ester or PTA-1 cross-linking induces PTA-1 and 4.1G to associate tightly with the cytoskeleton, and the PTA-1 from such activated cells now can bind to the amino-terminal region of 4.1G. We propose that these dynamic associations provide the structural basis for a regulated molecular adhesive complex that serves to cluster and transport LFA-1 and associated molecules.
Resumo:
The granulocyte colony-stimulating factor (G-CSF) and Fit-3 receptor agonist progenipoietin-1 (ProGP-1) has potent effects on dendritic cell (DC) expansion and may be an alternative to G-CSF for the mobilization of stem cells for allogeneic stem cell transplantation (SCT). We studied the ability of stem cell grafts mobilized with this agent to induce graft-versus-host disease (GVHD) to minor and major histocompatibility antigens in the well-described B6 --> B6D2F1 SCT model. ProGP-1, G-CSIF, or control diluent was administered to donor B6 mice. ProGP-1 expanded all cell lineages in the spleen, and unseparated splenocytes from these animals produced large amounts of interleukin 10 (IL-10) and transforming growth factor beta (TGFbeta) whereas the expression of T-cell adhesion molecules was diminished. Transplantation survival was 0%, 50%, and 90% in recipients of control-, G-CSF-, and ProGP-1-treated allogeneic donor splenocytes, respectively (P < .0001). Donor pretreatment with ProGP-1 allowed a 4-fold escalation in T-cell dose over that possible with G-CSF. Donor CD4 T cells from allogeneic SCT recipients of ProGP-1 splenocytes demonstrated an anergic response to host antigen, and cytokine production (interferon gamma [IFNγ], IL-4, and IL-10) was also reduced while CD8 T-cell cytotoxicity to host antigens remained intact. Neither CD11c(hi) DCs nor CD11c(dim)/B220(hi) DCs from ProGP-1-treated animals conferred protection from GVHD when added to control spleen. Conversely, when equal numbers of purified T cells from control-, G-CSF-, or ProGP-1-treated allogeneic donors were added to allogeneic T-cell-depleted control spleen, survival at day 60 was 0%, 15%, and 90%, respectively (P < .0001). The improved survival in recipients of ProGP-1 T cells was associated with reductions in systemic tumor necrosis factor alpha generation and GVHD of the gastrointestinal tract. We conclude that donor pretreatment with ProGP-1 is superior to G-CSIF for the prevention of GVHD after allogeneic SCT, primarily due to incremental affects on T-cell phenotype and function
Resumo:
The receptor protein tyrosine phosphatase density-enhanced phosphatase-1 (DEP-1) has been implicated in aberrant cancer cell growth and immune cell function, however, its function within cells has yet to be properly elucidated. To investigate the cellular function of DEP-1, stable cell lines inducibly expressing DEP-1 were generated. Induction of DEP-1 expression was found to decrease PDGF-stimulated tyrosine phosphorylation of a number of cellular proteins including the PDGF receptor, and to inhibit growth factor-stimulated phosphorylation of components of the MAPK pathway, indicating that DEP-1 antagonised PDGF receptor signalling. This was supported by data showing that DEP-1 expression resulted in a reduction in cell proliferation. DEP-1-expressing cells had fewer actin-containing microfilament bundles, reduced vinculin and paxillin-containing adhesion plaques, and were defective in interactions with fibronectin. Defective cell-substratum adhesion correlated with lack of activation of FAK in DEP-1-expressing cells. Time-lapse interference reflection microscopy of live cells revealed that although small focal contacts at the leading edge were generated in DEP-1-expressing cells, they failed to mature into stable focal adhesions, as found in control cells. Further motility analysis revealed that DEP-1-expressing cells retained limited random motility, but showed no chemotaxis towards a gradient of PDGF. In addition, cell-cell contacts were disrupted, with a change in the localisation of cadherin from discrete areas of cell-cell contact to large areas of membrane interaction, and there was a parallel redistribution of beta-catenin. These results demonstrate that DEP-1 is a negative regulator of cell proliferation, cell-substratum contacts, motility and chemotaxis in fibroblasts.