20 resultados para Root-nodule Development


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nodulation in legumes provides a major conduit of available nitrogen into the biosphere. The development of nitrogen-fixing nodules results from a symbiotic interaction between soil bacteria, commonly called rhizobia, and legume plants. Molecular genetic analysis in both model and agriculturally important legume species has resulted in the identification of a variety of genes that are essential for the establishment, maintenance and regulation of this symbiosis. Autoregulation of nodulation (AON) is a major internal process by which nodule numbers are controlled through prior nodulation events. Characterisation of AON-deficient mutants has revealed a novel systemic signal transduction pathway controlled by a receptor-like kinase. This review reports our present level of understanding on the short- and long-distance signalling networks controlling early nodulation events and AON.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Legume plants carefully control the extent of nodulation in response to rhizobial infection. To examine the mechanism underlying this process we conducted a detailed analysis of the Lotus japonicus hypernodulating mutants, har1-1, 2 and 3 that define a new locus, HYPERNODULATION ABERRANT ROOT FORMATION (Har1), involved in root and symbiotic development. Mutations in the Har1 locus alter root architecture by inhibiting root elongation, diminishing root diameter and stimulating lateral root initiation. At the cellular level these developmental alterations are associated with changes in the position and duration of root cell growth and result in a premature differentiation of har1-1 mutant root. No significant differences between har1-1 mutant and wild-type plants were detected with respect to root growth responses to 1-aminocyclopropane1-carboxylic acid, the immediate precursor of ethylene, and auxin; however, cytokinin in the presence of AVG (aminoetoxyvinylglycine) was found to stimulate root elongation of the har1-1 mutant but not the wild-type. After inoculation with Mesorhizobium loti, the har1 mutant lines display an unusual hypernodulation (HNR) response, characterized by unrestricted nodulation (hypernodulation), and a concomitant drastic inhibition of root and shoot growth. These observations implicate a role for the Har1 locus in both symbiotic and non-symbiotic development of L. japonicus, and suggest that regulatory processes controlling nodule organogenesis and nodule number are integrated in an overall mechanism governing root growth and development.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Strategies to introduce genes into non-embryogenic plants for complementation of a mutation are described and tested on tetraploid alfalfa (Medicago sativa). Genes conditioning embryogenic potential, a mutant phenotype, and a gene to complement the mutation can be combined using several different crossing and selection steps. In the successful strategy used here, the M. sativa genotype MnNC-1008(NN) carrying the recessive non-nodulating mutant allele nn(1) was crossed with the highly embryogenic alfalfa line Regen S and embryogenic hybrid individuals were identified from the F1 progeny. After transformation of these hybrids with the wild-type gene (NORK), an F2 generation segregating for the mutation and transgene were produced. Plants homozygous for the mutant allele and carrying the wild-type NORK transgene could form root nodules after inoculation with Sinorhizobium meliloti demonstrating successful complementation of the nn(1) mutation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 2-year study was carried out on established trees at two sites in southeastern Queensland, Australia, to identify environmental factors that influenced rooting of Backhousia citriodora from cuttings. Complex interactions of rainfall events above 20 mm from the preceding month and mean maximum temperature on stock plants resulted in a correlation with rooting success of r = 0.81 and 0.74 for sites at The University Of Queensland, Gatton Campus, and Cedar Glen, respectively. A more detailed investigation under controlled environmental conditions showed that maintaining stock plants at temperatures between 10 and 30degreesC had no direct effect on rooting capacity. However, temperature was correlated with growth, which may have an indirect effect on root formation. In spring floral initiation was found to only delay rooting and had no effect on the final rooting percentage. A series of seasonal experiments demonstrated that application of the auxins indole-3-acetic acid, indole-3-butyric acid and napthaleneacetic acid over a range of concentrations (1000-8000 mug/ml) did not significantly increase rooting compared to the control and there is no practical advantage in applying auxins. Seasonal results and the temperature experiment also suggest that under a glasshouse environment with higher temperatures in winter and an adequate supply of water, B. citriodora cuttings can be successfully rooted over the whole year. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Potted lychee trees (cv. Tai so) with mature vegetative flushes were grown under three day/night temperature regimes known to induce floral (18/13degreesC), intermediate (23/18degreesC) and vegetative (28/23degreesC) shoot structures. Heating roots respective to shoots accelerated bud-break and shoot emergence, but reduced the level of floral initiation in emergent shoots. At 18/13degreesC, root temperatures of 20 and 25degreesC decreased the period of shoot dormancy from 9 weeks to 5 and 3 weeks, respectively. A root temperature of 20degreesC also increased the proportion of both leafy and stunted panicles to normal leafless panicles, and reduced the number of axillary panicles accompanying each terminal particle. A root temperature of 25degreesC produced only vegetative shoots. At 23/18degreesC, heating roots increased the proportion of vegetative shoots and partially emerged buds to leafy and stunted particles as well as accelerating bud-break. Cooling of roots in relation to the shoot resulted in non-emergence of buds at both 28/23 and 23/18degreesC. Bud-break did not occur until root cooling was terminated and root temperature returned to that of the shoot. At 23/18degreesC, subsequent emergent shoots had a greater proportion of leafy panicles relative to control trees. At 28/23degreesC, all emergent shoots remained vegetative. Lychee floral initiation is influenced by both root and shoot temperature. Root temperature has a direct effect on the length of the shoot dormancy period, with high temperatures reducing this period and the subsequent level of floral initiation. However, an extended period of dormancy in itself is not sufficient for floral initiation, with low shoot temperatures also a necessary prerequisite. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Autoregulatory mechanisms have been reported in the rhizobial and the mycorrhizal symbiosis. Autoregulation means that already existing nodules or an existing root colonization by an arbuscular mycorrhizal fungus systemically suppress subsequent nodule formation/root colonization in other parts of the root system. Mutants of some legumes lost their ability to autoregulate the nodule number and thus display a supernodulating phenotype. On studying the effect of pre-inoculation of one side of a split-root system with an arbuscular mycorrhizal fungus on subsequent mycorrhization in the second side of the split-root system of a wild-type soybean (Glycine max L.) cv. Bragg and its supernodulating mutant nts1007, we observed a clear suppressional effect in the wild-type, whereas further root colonization in the split-root system of the mutant nts1007 was not suppressed. These data strongly indicate that the mechanisms involved in supernodulation also affect mycorrhization and support the hypothesis that the autoregulation in the rhizobial and the mycorrhizal symbiosis is controlled in a similar manner. The accumulation patterns of the plant hormones IAA, ABA and Jasmonic acid (JA) in non-inoculated control plants and split-root systems of inoculated plants with one mycorrhizal side of the split-root system and one non-mycorrhizal side, indicate an involvement of IAA in the autoregulation of mycorrhization. Mycorrhizal colonization of soybeans also resulted in a strong induction of ABA and JA levels, but on the basis of our data the role of these two phytohormones in mycorrhizal autoregulation is questionable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In young adults, improvements in the rate of force development as a result of resistance training are accompanied by increases in neural drive in the very initial phase of muscle activation. The purpose of this experiment was to determine if older adults also exhibit similar adaptations in response to rate of force development (RFD) training. Eight young (21-35 years) and eight older (60-79 years) adults were assessed during the production of maximum rapid contractions, before and after four weeks of progressive resistance training for the elbow flexors. Young and older adults exhibited significant increases (P< 0.01) in peak RFD, of 25.6% and 28.6% respectively. For both groups the increase in RFD was accompanied by an increase in the root mean square (RMS) amplitude and in the rate of rise (RER) in the electromyogram (EMG) throughout the initial 100 ms of activation. For older adults, however, this training response was only apparent in the brachialis and brachioradialis muscles. This response was not observed in surface EMG recorded from the biceps brachii muscle during either RFD testing or throughout training, nor was it observed in the pronator teres muscle. The minimal adaptations observed for older adults in the bifunctional muscles biceps brachii and pronator teres are considered to indicate a compromise of the neural adaptations older adults might experience in response to resistance training.