29 resultados para Milk as food
Resumo:
The textures of yogurt made from ultra-high temperature (UHT) treated and conventionally treated milks at high total solids were investigated. The yogurt premixes, fortified with low-heat skim milk powder to 16%, 18%, and 20% total solids, were UHT processed at 143 degreesC for 6 s and heated at 85 degreesC for 30 min using the conventional method. The onset of gelation was delayed in the UHT-processed milk compared with conventionally heated milk. During fermentation, the viscosity of yogurt made, from UHT-treated milk at 20% total solids was close to that of yogurt made from conventionally treated milk with 16% total solids. However, after storage for greater than or equal to1 d, the yogurt made from UHT-treated milk had lower viscosity and gel strength than the yogurt made from conventionally treated milk. The solids level had no influence on yogurt culture growth.
Resumo:
The importance of sticky behaviour of amorphous food powders has been recognized over many decades in the food industry due to its influence on process and handling abilities and quality of the powders. This paper emphasizes the role of stickiness in the food powder industry as well as reviews the stickiness characterization techniques developed to date. This paper also attempts to correlate the stickiness behaviour of food powders to the instrumental analysis such as glass transition temperature. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
Milk proteins have been studied continuously for over 50 years. Knowledge of this complex protein system has evolved incrementally in recent decades, largely coinciding with advances in technology. Proteomics and associated technologies have the potential to facilitate further advances in our knowledge of milk proteins. Proteomics allows for the detection, identification and characterization of milk proteins. More importantly, proteomics facilitates the analysis of large numbers of milk proteins simultaneously. In the first part of this review we provide a description of the key techniques used within proteomic methodologies, with an emphasis on their general uses within proteomics. In the second part we summarize recent applications of proteomics to milk proteins and highlight the potential for new and rapid advances in the analysis of milk proteins. In particular, we emphasise the effectiveness of two-dimensional gel electrophoresis in combination with various mass spectrometry techniques for the detailed characterization of milk proteins. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Relationships of various reproductive disorders and milk production performance of Danish dairy farms were investigated. A stochastic frontier production function was estimated using data collected in 1998 from 514 Danish dairy farms. Measures of farm-level milk production efficiency relative to this production frontier were obtained, and relationships between milk production efficiency and the incidence risk of reproductive disorders were examined. There were moderate positive relationships between milk production efficiency and retained placenta, induction of estrus, uterine infections, ovarian cysts, and induction of birth. Inclusion of reproductive management variables showed that these moderate relationships disappeared, but directions of coefficients for almost all those variables remained the same. Dystocia showed a weak negative correlation with milk production efficiency. Farms that were mainly managed by young farmers had the highest average efficiency scores. The estimated milk losses due to inefficiency averaged 1142, 488, and 256 kg of energy-corrected milk per cow, respectively, for low-, medium-, and high-efficiency herds. It is concluded that the availability of younger cows, which enabled farmers to replace cows with reproductive disorders, contributed to high cow productivity in efficient farms. Thus, a high replacement rate more than compensates for the possible negative effect of reproductive disorders. The use of frontier production and efficiency/ inefficiency functions to analyze herd data may enable dairy advisors to identify inefficient herds and to simulate the effect of alternative management procedures on the individual herd's efficiency.
Resumo:
Solid phase microextraction (SPME) offers a solvent-free and less labour-intensive alternative to traditional flavour isolation techniques. In this instance, SPME was optimised for the extraction of 17 stale flavour volatiles (C3-11,13 methyl ketones and C4-10 saturated aldehydes) from the headspace of full-cream ultrahigh-temperature (UHT)-processed milk. A comparison of relative extraction efficiencies was made using three fibre coatings, three extraction times and three extraction temperatures. Linearity of calibration curves, limits of detection and repeatability (coefficients of variation) were also used in determining the optimum extraction conditions. A 2 cm fibre coating of 50130 gm divinylbenzene/Carboxen/polydimethylsiloxane in conjunction with a 15 min extraction at 40 degrees C were chosen as the final optimum conditions. This method can be used as an objective tool for monitoring the flavour quality of UHT milk during storage. (c) 2005 Society of Chemical Industry.
Resumo:
Methyl ketones, aldehydes and free saturated fatty acids were measured in the headspace of samples of two indirectly processed and two directly processed Australian commercial UHT milks during room temperature storage for 16 weeks. The analytes were isolated using headspace solid phase microextraction and analysed by gas chromatography coupled with flame ionisation detection. All methyl ketones and aldehydes increased during storage, With free saturated fatty acids exhibiting little change. On average, the total methyl ketone and aldehyde concentrations in the indirectly processed UHT milks were higher than those in the directly processed samples. A strong correlation was found between the concentration of methyl ketones and various heat indices (furosine, lactulose and undenatured whey proteins) in the milk samples.
Resumo:
High pressure homogenisation (HPH) is a novel dairy processing tool, which has many effects on enzymes, microbes, fat globules and proteins in milk. The effects of HPH on milk are due to a combination of shear forces and frictional heating of the milk during processing; the relative importance of these different factors is unclear, and was the focus of this study. The effect of milk inlet temperature (in the range 10-50 degrees C) on residual plasmin, alkaline phosphatase, lactoperoxidase and lipase activities in raw whole bovine milk homogenised at 200 MPa was investigated. HPH caused significant heating of the milk; outlet temperature increased in a linear fashion (0(.)5887 degrees C/degrees C, R-2 =0-9994) with increasing inlet temperature. As milk was held for 20 s at the final temperature before cooling, samples of the same milk were heated isothermally in glass capillary tubes for the same time/temperature combinations. Inactivation profiles of alkaline phosphatase in milk were similar for isothermal heating or HPH, indicating that loss of enzyme activity was due to heating alone. Loss of plasmin and lactoperoxidase activity in HPH milk, however, was greater than that in heated milk. Large differences in residual lipase activities in milks subjected to heating or HPH were observed due to the significant increase in lipase activity in homogenised milk. Denaturation of beta-lactoglobulin was more extensive following HPH than the equivalent heat treatment. Inactivation of plasmin was correlated with increasing fat/serum interfacial area but was not correlated with denaturation of beta-lactoglobulin. Thus, while some effects of HPH on milk are due to thermal effects alone, many are induced by the combination of forces and heating to which the milk is exposed during HPH.
Resumo:
Fouling is the deposition of milk solids on heat transfer sur aces, particularly heat exchangers. It is a major industrial problem, which causes a decrease in heat transfer efficiency and shortens run times. The resultant effect is a decrease in process efficiency and economy. For studying and monitoring deposit formation, suitable fouling detectors or methods of measuring the deposit are required. This can be achieved through direct means, whereby the deposit is analyzed after a certain time, or indirectly through instrumentation for monitoring parameters such as temperature, pressure, flow rate, overall heat transfer coefficient, heat flux, and other physical properties. This article reviews the various reported fouling detection methods.
Resumo:
There is some evidence that dietary factors may modify the risk of squamous cell carcinoma (SCC) of the skin, but the association between food intake and SCC has not been evaluated prospectively. We examined the association between food intake and SCC incidence among 1,056 randomly selected adults living in an Australian sub-tropical community. Measurement-error corrected estimates of intake in 15 food groups were defined from a validated food frequency questionnaire in 1992. Associations with SCC risk were assessed using Poisson and negative binomial regression to the persons affected and tumour counts, respectively, based on incident, histologically confirmed tumours occurring between 1992 and 2002. After multivariable adjustment, none of the food groups was significantly associated with SCC risk. Stratified analysis in participants with a past history of skin cancer showed a decreased risk of SCC tumours for high intakes of green leafy vegetables (RR = 0.45, 95% CI = 0.22-0.91; p for trend = 0.02) and an increased risk for high intake of unmodified dairy products (RR = 2.53, 95% CI: 1.15-5.54; p for trend = 0.03). Food intake was not associated with SCC risk in persons who had no past history of skin cancer. These findings suggest that consumption of green leafy vegetables may help prevent development of subsequent SCCs of the skin among people with previous skin cancer and that consumption of unmodified dairy products, such as whole milk, cheese and yoghurt, may increase SCC risk in susceptible persons.
Resumo:
Milk obtained from cows on 2 subtropical dairy feeding systems were compared for their suitability for Cheddar cheese manufacture. Cheeses were made in a small-scale cheesemaking plant capable of making 2 blocks ( about 2 kg each) of Cheddar cheese concurrently. Its repeatability was tested over 10 separate cheesemaking days with no significant differences being found between the 2 vats in cheesemaking parameters or cheese characteristics. In the feeding trial, 16 pairs of Holstein - Friesian cows were used in 2 feeding systems (M1, rain-grown tropical grass pastures and oats; and M5, a feedlot, based on maize/barley silage and lucerne hay) over 2 seasons ( spring and autumn corresponding to early and late lactation, respectively). Total dry matter, crude protein (kg/cow. day) and metabolisable energy (MJ/cow.day) intakes were 17, 2.7, and 187 for M1 and 24, 4, 260 for M5, respectively. M5 cows produced higher milk yields and milk with higher protein and casein levels than the M1 cows, but the total solids and fat levels were similar (P > 0.05) for both M1 and M5 cows. The yield and yield efficiency of cheese produced from the 2 feeding systems were also not significantly different. The results suggest that intensive tropical pasture systems can produce milk suitable for Cheddar cheese manufacture when cows are supplemented with a high energy concentrate. Season and stage of lactation had a much greater effect than feeding system on milk and cheesemaking characteristics with autumn ( late lactation) milk having higher protein and fat contents and producing higher cheese yields.
Resumo:
Bovine milk contains a lipoprotein lipase that accounts for most, if not all, of its lipolytic activity. The total lipase activity in raw milk is sufficient to cause rapid hydrolysis of a large proportion of the fat. However, in reality this does not happen, because the lipase is prevented from accessing the fat by the milkfat globule membrane. Physical damage to this membrane in raw milk initiates lipolysis. Furthermore, simply cooling certain individual milks soon after secretion can initiate the so-called spontaneous lipolysis. The biochemical basis of spontaneous lipolysis is still poorly understood, but it appears to be related to a balance between activating and inhibiting factors in the milk. Lipolysis in milk and milk products causes rancid off-flavours and other problems, and is a constant concern in the dairy industry. A thorough understanding of the mechanism of lipolysis and constant vigilance by operatives is required to minimize lipase-related problems. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Survival of the microencapsulated probiotics, Lactobacillus acidophilus 547, Bifidobacterium bifidum ATCC 1994, and Lactobacillus casei 01, in stirred yoghurt from UHT- and conventionally treated milk during low temperature storage was investigated. The probiotic cells both as free cells and microencapsulated cells (in alginate beads coated with chitosan) were added into 20 g/100 g total solids stirred yoghurt from UHT-treated milk and 16 g/100 g total solids yoghurt from conventionally treated milk after 3.5 h of fermentation. The products were kept at 4 degrees C for 4 weeks. The survival of encapsulated probiotic bacteria was higher than free cells by approximately 1 log cycle. The number of probiotic bacteria was maintained above the recommended therapeutic minimum (10(7) cfu g(-1)) throughout the storage except for R bifidum. The viabilities of probiotic bacteria in yoghurts from both UHT- and conventionally treated milks were not significantly (P > 0.05) different. (c) 2004 Swiss Society of Food Science and Technology. Published by Elsevier Ltd. All rights reserved.
Resumo:
The cyclone stickiness test (CST) technique was applied to measure the stickiness temperature and relative humidity of whey, honey, and apple juice powders. A moisture sorption isotherm study was conducted to analyze the surface moisture content of whey powder. The glass transition temperatures of the sample powder were analyzed using differential scanning calorimetry (DSC). The stickiness results of these products were found within 20 degrees C above their surface glass transition temperatures, which is well within the normal temperature range for glass transition in general. The results obtained by the CST technique were found consistent with DSC values.