69 resultados para Interdisciplinary Applications
Resumo:
There has been a great deal of discussion about the need for interdisciplinary, applied research to service the needs of the knowledge economy and to solve the broader complex theoretical problems of the twenty-first century. This is known as 'Mode 2' knowledge production. Yet, university research higher degree programs continue to be largely disciplinary-based. While there has been a rise in the number of research students working on industry-related, applied projects, very few research students gain exposure to interdisciplinary research processes. This paper explores several examples of interdisciplinary doctoral programs based in North America and Australia and seeks to draw upon examples of undergraduate interdisciplinary learning and epistemology. In reviewing this theoretical work and a number of strategies implemented at an Australian university, the paper begins to imagine an interdisciplinary doctoral pedagogy.
Resumo:
The measured inter-electrode capacitances of silicon-on-sapphire (SOS) MOSFETs are presented and compared with simulation results. It is shown that the variations of capacitances with DC bias differ from those of bulk MOSFETs due to change in body potential variation of the SOS device resulting from electron-hole pair generation through impact ionisation.
Finite mixture regression model with random effects: application to neonatal hospital length of stay
Resumo:
A two-component mixture regression model that allows simultaneously for heterogeneity and dependency among observations is proposed. By specifying random effects explicitly in the linear predictor of the mixture probability and the mixture components, parameter estimation is achieved by maximising the corresponding best linear unbiased prediction type log-likelihood. Approximate residual maximum likelihood estimates are obtained via an EM algorithm in the manner of generalised linear mixed model (GLMM). The method can be extended to a g-component mixture regression model with the component density from the exponential family, leading to the development of the class of finite mixture GLMM. For illustration, the method is applied to analyse neonatal length of stay (LOS). It is shown that identification of pertinent factors that influence hospital LOS can provide important information for health care planning and resource allocation. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
An important aspect in manufacturing design is the distribution of geometrical tolerances so that an assembly functions with given probability, while minimising the manufacturing cost. This requires a complex search over a multidimensional domain, much of which leads to infeasible solutions and which can have many local minima. As well, Monte-Carlo methods are often required to determine the probability that the assembly functions as designed. This paper describes a genetic algorithm for carrying out this search and successfully applies it to two specific mechanical designs, enabling comparisons of a new statistical tolerancing design method with existing methods. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The modelling of inpatient length of stay (LOS) has important implications in health care studies. Finite mixture distributions are usually used to model the heterogeneous LOS distribution, due to a certain proportion of patients sustaining-a longer stay. However, the morbidity data are collected from hospitals, observations clustered within the same hospital are often correlated. The generalized linear mixed model approach is adopted to accommodate the inherent correlation via unobservable random effects. An EM algorithm is developed to obtain residual maximum quasi-likelihood estimation. The proposed hierarchical mixture regression approach enables the identification and assessment of factors influencing the long-stay proportion and the LOS for the long-stay patient subgroup. A neonatal LOS data set is used for illustration, (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
The paper presents a computational system based upon formal principles to run spatial models for environmental processes. The simulator is named SimuMap because it is typically used to simulate spatial processes over a mapped representation of terrain. A model is formally represented in SimuMap as a set of coupled sub-models. The paper considers the situation where spatial processes operate at different time levels, but are still integrated. An example of such a situation commonly occurs in watershed hydrology where overland flow and stream channel flow have very different flow rates but are highly related as they are subject to the same terrain runoff processes. SimuMap is able to run a network of sub-models that express different time-space derivatives for water flow processes. Sub-models may be coded generically with a map algebra programming language that uses a surface data model. To address the problem of differing time levels in simulation, the paper: (i) reviews general approaches for numerical solvers, (ii) considers the constraints that need to be enforced to use more adaptive time steps in discrete time specified simulations, and (iii) scaling transfer rates in equations that use different time bases for time-space derivatives. A multistep scheme is proposed for SimuMap. This is presented along with a description of its visual programming interface, its modelling formalisms and future plans. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Spatial characterization of non-Gaussian attributes in earth sciences and engineering commonly requires the estimation of their conditional distribution. The indicator and probability kriging approaches of current nonparametric geostatistics provide approximations for estimating conditional distributions. They do not, however, provide results similar to those in the cumbersome implementation of simultaneous cokriging of indicators. This paper presents a new formulation termed successive cokriging of indicators that avoids the classic simultaneous solution and related computational problems, while obtaining equivalent results to the impractical simultaneous solution of cokriging of indicators. A successive minimization of the estimation variance of probability estimates is performed, as additional data are successively included into the estimation process. In addition, the approach leads to an efficient nonparametric simulation algorithm for non-Gaussian random functions based on residual probabilities.
Resumo:
Minimum/maximum autocorrelation factor (MAF) is a suitable algorithm for orthogonalization of a vector random field. Orthogonalization avoids the use of multivariate geostatistics during joint stochastic modeling of geological attributes. This manuscript demonstrates in a practical way that computation of MAF is the same as discriminant analysis of the nested structures. Mathematica software is used to illustrate MAF calculations from a linear model of coregionalization (LMC) model. The limitation of two nested structures in the LMC for MAF is also discussed and linked to the effects of anisotropy and support. The analysis elucidates the matrix properties behind the approach and clarifies relationships that may be useful for model-based approaches. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
The integration of geo-information from multiple sources and of diverse nature in developing mineral favourability indexes (MFIs) is a well-known problem in mineral exploration and mineral resource assessment. Fuzzy set theory provides a convenient framework to combine and analyse qualitative and quantitative data independently of their source or characteristics. A novel, data-driven formulation for calculating MFIs based on fuzzy analysis is developed in this paper. Different geo-variables are considered fuzzy sets and their appropriate membership functions are defined and modelled. A new weighted average-type aggregation operator is then introduced to generate a new fuzzy set representing mineral favourability. The membership grades of the new fuzzy set are considered as the MFI. The weights for the aggregation operation combine the individual membership functions of the geo-variables, and are derived using information from training areas and L, regression. The technique is demonstrated in a case study of skarn tin deposits and is used to integrate geological, geochemical and magnetic data. The study area covers a total of 22.5 km(2) and is divided into 349 cells, which include nine control cells. Nine geo-variables are considered in this study. Depending on the nature of the various geo-variables, four different types of membership functions are used to model the fuzzy membership of the geo-variables involved. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Cyclic peptides containing oxazole and thiazole heterocycles have been examined for their capacity to be used as scaffolds in larger, more complex, protein-like structures. Both the macrocyclic scaffolds and the supramolecular structures derived therefrom have been visualised by molecular modelling techniques. These molecules are too symmetrical to examine structurally by NMR spectroscopy. The cyclic hexapeptide ([Aaa-Thz](3), [Aaa-Oxz](3)) and cyclic octapeptide ([Aaa-Thz](4), [Aaa-Oxz](4)) analogues are composed of dipeptide surrogates (Aaa: amino acid, Thz: thiazole, Oxz: oxazole) derived from intramolecular condensation of cysteine or serine/threonine side chains in dipeptides like Aaa-Cys, Aaa-Ser and Aaa-Thr. The five-membered heterocyclic rings, like thiazole, oxazole and reduced analogues like thiazoline, thiazolidine and oxazoline have profound influences on the structures and bioactivities of cyclic peptides derived therefrom. This work suggests that such constrained cyclic peptides can be used as scaffolds to create a range of novel protein-like supramolecular structures (e.g. cylinders, troughs, cones, multi-loop structures, helix bundles) that are comparable in size, shape and composition to bioactive surfaces of proteins. They may therefore represent interesting starting points for the design of novel artificial proteins and artificial enzymes. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
We present a novel method, called the transform likelihood ratio (TLR) method, for estimation of rare event probabilities with heavy-tailed distributions. Via a simple transformation ( change of variables) technique the TLR method reduces the original rare event probability estimation with heavy tail distributions to an equivalent one with light tail distributions. Once this transformation has been established we estimate the rare event probability via importance sampling, using the classical exponential change of measure or the standard likelihood ratio change of measure. In the latter case the importance sampling distribution is chosen from the same parametric family as the transformed distribution. We estimate the optimal parameter vector of the importance sampling distribution using the cross-entropy method. We prove the polynomial complexity of the TLR method for certain heavy-tailed models and demonstrate numerically its high efficiency for various heavy-tailed models previously thought to be intractable. We also show that the TLR method can be viewed as a universal tool in the sense that not only it provides a unified view for heavy-tailed simulation but also can be efficiently used in simulation with light-tailed distributions. We present extensive simulation results which support the efficiency of the TLR method.
Resumo:
This paper investigates the non-linear bending behaviour of functionally graded plates that are bonded with piezoelectric actuator layers and subjected to transverse loads and a temperature gradient based on Reddy's higher-order shear deformation plate theory. The von Karman-type geometric non-linearity, piezoelectric and thermal effects are included in mathematical formulations. The temperature change is due to a steady-state heat conduction through the plate thickness. The material properties are assumed to be graded in the thickness direction according to a power-law distribution in terms of the volume fractions of the constituents. The plate is clamped at two opposite edges, while the remaining edges can be free, simply supported or clamped. Differential quadrature approximation in the X-axis is employed to convert the partial differential governing equations and the associated boundary conditions into a set of ordinary differential equations. By choosing the appropriate functions as the displacement and stress functions on each nodal line and then applying the Galerkin procedure, a system of non-linear algebraic equations is obtained, from which the non-linear bending response of the plate is determined through a Picard iteration scheme. Numerical results for zirconia/aluminium rectangular plates are given in dimensionless graphical form. The effects of the applied actuator voltage, the volume fraction exponent, the temperature gradient, as well as the characteristics of the boundary conditions are also studied in detail. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
In this article we investigate the asymptotic and finite-sample properties of predictors of regression models with autocorrelated errors. We prove new theorems associated with the predictive efficiency of generalized least squares (GLS) and incorrectly structured GLS predictors. We also establish the form associated with their predictive mean squared errors as well as the magnitude of these errors relative to each other and to those generated from the ordinary least squares (OLS) predictor. A large simulation study is used to evaluate the finite-sample performance of forecasts generated from models using different corrections for the serial correlation.
Resumo:
In this paper we propose a new identification method based on the residual white noise autoregressive criterion (Pukkila et al. , 1990) to select the order of VARMA structures. Results from extensive simulation experiments based on different model structures with varying number of observations and number of component series are used to demonstrate the performance of this new procedure. We also use economic and business data to compare the model structures selected by this order selection method with those identified in other published studies.
Resumo:
We investigate the role of local connectedness in utility theory and prove that any continuous total preorder on a locally connected separable space is continuously representable. This is a new simple criterion for the representability of continuous preferences, and is not a consequence of the standard theorems in utility theory that use conditions such as connectedness and separability, second countability, or path-connectedness. Finally we give applications to problems involving the existence of value functions in population ethics and to the problem of proving the existence of continuous utility functions in general equilibrium models with land as one of the commodities. (C) 2003 Elsevier B.V. All rights reserved.