177 resultados para Critical Reynolds Number


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In an open channel, the transition from super- to sub-critical flow is a flow singularity (the hydraulic jump) characterised by a sharp rise in free-surface elevation, strong turbulence and air entrainment in the roller. A key feature of the hydraulic jump flow is the strong free-surface aeration and air-water flow turbulence. In the present study, similar experiments were conducted with identical inflow Froude numbers Fr1 using a geometric scaling ratio of 2:1. The results of the Froude-similar experiments showed some drastic scale effects in the smaller hydraulic jumps in terms of void fraction, bubble count rate and bubble chord time distributions. Void fraction distributions implied comparatively greater detrainment at low Reynolds numbers yielding some lesser aeration of the jump roller. The dimensionless bubble count rates were significantly lower in the smaller channel, especially in the mixing layer. The bubble chord time distributions were quantitatively close in both channels, and they were not scaled according to a Froude similitude. Simply the hydraulic jump remains a fascinating two-phase flow motion that is still poorly understood.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Turbulent free jets issuing from rectangular slots with various high aspect ratios (15-120) are characterized. The centerline mean and rms velocities are measured using hot-wire anemometry over a downstream distance of up to 160 slot heights at a slot-height-based Reynolds number of 10000. Experimental results suggest that a rectangular jet with sufficiently high aspect ratio (> 15) may be distinguished between three flow zones: an initial quasi-plane-jet zone, a transition zone, and a final quasi-axisymmetric-jet zone. In the quasi-plane-jet zone, the turbulent velocity field is statistically similar, but not identical, to those of a plane jet. (c) 2005 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The tensions produced in the wall of a rigid, thin-walled, liquid-filled sphere as it moves with an axisymmetric straining flow are examined. This problem has not been previously addressed. A generalised correlation for the maximum wall tension, expressed in dimensionless form as a Weber number (We), is developed in terms of the acceleration number (Ac) and Reynolds number (Re) of the straining flow. At low Reynolds number We is dominated by viscous forces, while inertial forces due to internal pressure gradients caused by sphere acceleration dominate at higher Re. The generalised correlation has been used to examine the case of a typical yeast cell (a thin-walled, liquid-filled sphere) passing through a typical high-pressure homogeniser (a straining-flow device). At 56 MPa homogenising pressure, a 6 mu m yeast cell experiences tensions in the inertially dominated regime (Re = 100). The correlation gives We = 0.206, corresponding to a maximum wall tension of 8 Nm(-1). This is equivalent to an applied compressive force of 150 mu N and compares favourably with the force required to break yeast cells under compressive micromanipulation (40-90 mu N). Inertial forces may therefore be an important and previously unrecognised. mechanism of microbial cell disruption during high-pressure homogenisation. Further work is required to examine the likelihood of cell deformation in the high-strain-rate short-residence-time environment of the homogeniser, and the effect that such deformation may have on the contribution of inertial forces to disruption. (C) 1998 Published by Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Exact analytical solutions have been obtained for a hydrothermal system consisting of a horizontal porous layer with upward throughflow. The boundary conditions considered are constant temperature, constant pressure at the top, and constant vertical temperature gradient, constant Darcy velocity at the bottom of the layer. After deriving the exact analytical solutions, we examine the stability of the solutions using linear stability theory and the Galerkin method. It has been found that the exact solutions for such a hydrothermal system become unstable when the Rayleigh number of the system is equal to or greater than the corresponding critical Rayleigh number. For small and moderate Peclet numbers (Pe less than or equal to 6), an increase in upward throughflow destabilizes the convective flow in the horizontal layer. To confirm these findings, the finite element method with the progressive asymptotic approach procedure is used to compute the convective cells in such a hydrothermal system. Copyright (C) 1999 John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We conduct a theoretical analysis of steady-state heat transfer problems through mid-crustal vertical cracks with upward throughflow in hydrothermal systems. In particular, we derive analytical solutions for both the far field and near field of the system. In order to investigate the contribution of the forced advection to the total temperature of the system, two concepts, namely the critical Peclet number and the critical permeability of the system, have been presented and discussed in this paper. The analytical solution for the far field of the system indicates that if the pore-fluid pressure gradient in the crust is lithostatic, the critical permeability of the system can be used to determine whether or not the contribution of the forced advection to the total temperature of the system is negligible. Otherwise, the critical Peclet number should be used. For a crust of moderate thickness, the critical permeability is of the order of magnitude of 10(-20) m(2), under which heat conduction is the overwhelming mechanism to transfer heat energy, even though the pore-fluid pressure gradient in the crust is lithostatic. Furthermore, the lower bound analytical solution for the near field of the system demonstrates that the permeable vertical cracks in the middle crust can efficiently transfer heat energy from the lower crust to the upper crust of the Earth. Copyright (C) 2002 John Wiley Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In order to investigate the effect of material anisotropy on convective instability of three-dimensional fluid-saturated faults, an exact analytical solution for the critical Rayleigh number of three-dimensional convective flow has been obtained. Using this critical Rayleigh number, effects of different permeability ratios and thermal conductivity ratios on convective instability of a vertically oriented three-dimensional fault have been examined in detail. It has been recognized that (1) if the fault material is isotropic in the horizontal direction, the horizontal to vertical permeability ratio has a significant effect on the critical Rayleigh number of the three-dimensional fault system, but the horizontal to vertical thermal conductivity ratio has little influence on the convective instability of the system, and (2) if the fault material is isotropic in the fault plane, the thermal conductivity ratio of the fault normal to plane has a considerable effect on the critical Rayleigh number of the three-dimensional fault system, but the effect of the permeability ratio of the fault normal to plane on the critical Rayleigh number of three-dimensional convective flow is negligible.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We conduct a theoretical analysis to investigate the convective instability of 3-D fluid-saturated geological fault zones when they are heated uniformly from below. In particular, we have derived exact analytical solutions for the critical Rayleigh numbers of different convective flow structures. Using these critical Rayleigh numbers, three interesting convective flow structures have been identified in a geological fault zone system. It has been recognized that the critical Rayleigh numbers of the system have a minimum value only for the fault zone of infinite length, in which the corresponding convective flow structure is a 2-D slender-circle flow. However, if the length of the fault zone is finite, the convective flow in the system must be 3-D. Even if the length of the fault zone is infinite, since the minimum critical Rayleigh number for the 2-D slender-circle flow structure is so close to that for the 3-D convective flow structure, the system may have almost the same chance to pick up the 3-D convective flow structures. Also, because the convection modes are so close for the 3-D convective flow structures, the convective flow may evolve into the 3-D finger-like structures, especially for the case of the fault thickness to height ratio approaching zero. This understanding demonstrates the beautiful aspects of the present analytical solution for the convective instability of 3-D geological fault zones, because the present analytical solution is valid for any value of the ratio of the fault height to thickness. Using the present analytical solution, the conditions, under which different convective flow structures may take place, can be easily determined.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We conduct a theoretical analysis to investigate the double diffusion-driven convective instability of three-dimensional fluid-saturated geological fault zones when they are heated uniformly from below. The fault zone is assumed to be more permeable than its surrounding rocks. In particular, we have derived exact analytical solutions to the total critical Rayleigh numbers of the double diffusion-driven convective flow. Using the corresponding total critical Rayleigh numbers, the double diffusion-driven convective instability of a fluid-saturated three-dimensional geological fault zone system has been investigated. The related theoretical analysis demonstrates that: (1) The relative higher concentration of the chemical species at the top of the three-dimensional geological fault zone system can destabilize the convective flow of the system, while the relative lower concentration of the chemical species at the top of the three-dimensional geological fault zone system can stabilize the convective flow of the system. (2) The double diffusion-driven convective flow modes of the three-dimensional geological fault zone system are very close each other and therefore, the system may have the similar chance to pick up different double diffusion-driven convective flow modes, especially in the case of the fault thickness to height ratio approaching 0. (3) The significant influence of the chemical species diffusion on the convective instability of the three-dimensional geological fault zone system implies that the seawater intrusion into the surface of the Earth is a potential mechanism to trigger the convective flow in the shallow three-dimensional geological fault zone system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Numerical methods are used to simulate the double-diffusion driven convective pore-fluid flow and rock alteration in three-dimensional fluid-saturated geological fault zones. The double diffusion is caused by a combination of both the positive upward temperature gradient and the positive downward salinity concentration gradient within a three-dimensional fluid-saturated geological fault zone, which is assumed to be more permeable than its surrounding rocks. In order to ensure the physical meaningfulness of the obtained numerical solutions, the numerical method used in this study is validated by a benchmark problem, for which the analytical solution to the critical Rayleigh number of the system is available. The theoretical value of the critical Rayleigh number of a three-dimensional fluid-saturated geological fault zone system can be used to judge whether or not the double-diffusion driven convective pore-fluid flow can take place within the system. After the possibility of triggering the double-diffusion driven convective pore-fluid flow is theoretically validated for the numerical model of a three-dimensional fluid-saturated geological fault zone system, the corresponding numerical solutions for the convective flow and temperature are directly coupled with a geochemical system. Through the numerical simulation of the coupled system between the convective fluid flow, heat transfer, mass transport and chemical reactions, we have investigated the effect of the double-diffusion driven convective pore-fluid flow on the rock alteration, which is the direct consequence of mineral redistribution due to its dissolution, transportation and precipitation, within the three-dimensional fluid-saturated geological fault zone system. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Experiments to investigate the transition process in hypervelocity boundary layers were performed in the T4 free-piston shock tunnel. An array of thin-film heat-transfer gauges was used to detect the location and extent of the transitional region on a 1500 mm long x 120 turn wide flat plate, which formed one of the walls of a duct. The experiments were performed in a Mach 6 flow of air with 6- and 12-MJ/kg nozzle-supply enthalpies at unit Reynolds numbers ranging from 1.6 x 10(6) to 4.9 x 10(6) m(-1). The results show that the characteristics typical of transition taking place through the initiation, growth, and merger of turbulent spots are evident in the heat-transfer signals. A 2-mm-high excrescence located 440 turn from the leading edge was found to be capable of generating a turbulent wedge within an otherwise laminar boundary layer at a unit Reynolds number of 2.6 x 10(6) m(-1) at the 6-MJ/kg condition. A tripping strip, located 100 mm from the leading edge and consisting of a line 37 teeth of 2 rum height equally spaced and spanning the test surface, was also found to be capable of advancing the transition location at the same condition and at the higher enthalpy condition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The unsaturated flow of liquid through packed beds of large particles was studied using six different liquids, all with contact angles greater than 90degrees on the bed packing (wax spheres of 9, 15 and 19.4 mm diameter). The liquid flow was discrete in nature, as drops for low flow rates and rivulets for high flow rates. For unsaturated liquid flows, the actual percolation velocity, not superficial velocity, should be used to characterize the flow. The percolation velocity did not vary with packed-bed depth, but was a strong function of liquid flow rate, liquid and particle properties. Effects of liquid and particle properties (but not flow rate) are well captured by a simple correlation between the liquid-particle friction factor and Reynolds number based on actual percolation velocities. Liquid dispersion, characterized by the maximum dispersion angle, varies significantly with liquid and particle properties. The tentative correlation suggested here needs further validation for a wider range of conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effects of convective and absolute instabilities on the formation of drops formed from cylindrical liquid jets of glycerol/water issuing into still air were investigated. Medium-duration reduced gravity tests were conducted aboard NASA's KC-135 and compared to similar tests performed under normal gravity conditions to aid in understanding the drop formation process. In reduced gravity, the Rayleigh-Chandrasekhar Equation was found to accurately predict the transition between a region of absolute and convective instability as defined by a critical Weber number. Observations of the physics of the jet, its breakup, and subsequent drop dynamics under both gravity conditions and the effects of the two instabilities on these processes are presented. All the normal gravity liquid jets investigated, in regions of convective or absolute instability, were subject to significant stretching effects, which affected the subsequent drop and associated geometry and dynamics. These effects were not displayed in reduced gravity and, therefore, the liquid jets would form drops which took longer to form (reduction in drop frequency), larger in size, and more spherical (surface tension effects). Most observed changes, in regions of either absolute or convective instabilities, were due to a reduction in the buoyancy force and an increased importance of the surface tension force acting on the liquid contained in the jet or formed drop. Reduced gravity environments allow better investigations to be performed into the physics of liquid jets, subsequently formed drops, and the effects of instabilities on these systems. In reduced gravity, drops form up to three times more slowly and as a consequence are up to three times larger in volume in the theoretical absolute instability region than in the theoretical convective instability region. This difference was not seen in the corresponding normal gravity tests due to the masking effects of gravity. A drop is shown to be able to form and detach in a region of absolute instability, and spanning the critical Weber number (from a region of convective to absolute instability) resulted in a marked change in dynamics and geometry of the liquid jet and detaching drops. (C) 2002 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Large-eddy simulation is used to predict heat transfer in the separated and reattached flow regions downstream of a backward-facing step. Simulations were carried out at a Reynolds number of 28 000 (based on the step height and the upstream centreline velocity) with a channel expansion ratio of 1.25. The Prandtl number was 0.71. Two subgrid-scale models were tested, namely the dynamic eddy-viscosity, eddy-diffusivity model and the dynamic mixed model. Both models showed good overall agreement with available experimental data. The simulations indicated that the peak in heat-transfer coefficient occurs slightly upstream of the mean reattachment location, in agreement with experimental data. The results of these simulations have been analysed to discover the mechanisms that cause this phenomenon. The peak in heat-transfer coefficient shows a direct correlation with the peak in wall shear-stress fluctuations. It is conjectured that the peak in these fluctuations is caused by an impingement mechanism, in which large eddies, originating in the shear layer, impact the wall just upstream of the mean reattachment location. These eddies cause a 'downwash', which increases the local heat-transfer coefficient by bringing cold fluid from above the shear layer towards the wall.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The pumping characteristics of four Australian honey samples were investigated in a straight pipe. Six flow rates (100-500 kg h(-1)) were studied at three temperatures (35-50degreesC). The pressure loss increased with an increase in the length of the pipe, as the low rate was increased and as the temperature was reduced. In the 25.4 mm-pipe, the Reynolds number ranged from 0.2-32.0 and are substantially less than the critica value (2040-2180) for laminar condition in the system. The relationship between the wall shear stress and shear rate approximated power-law behaviour, and the power-law index was not significantly (p>0.05) different from 1.0. The honey samples exhibited Newtonian behaviour at all the temperatures and this was confirmed by rheometric studies using Couette geometry. A friction chart was generated independent of temperature and the type of honey. An equation was developed to predict the pressure loss of the honey in a typical pipeline at any temperature once the viscosity-temperature relationship had been established.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The convective instability of pore-fluid flow in inclined and fluid-saturated three-dimensional fault zones has been theoretically investigated in this paper. Due to the consideration of the inclined three-dimensional fault zone with any values of the inclined angle, it is impossible to use the conventional linear stability analysis method for deriving the critical condition (i.e., the critical Rayleigh number) which can be used to investigate the convective instability of the pore-fluid flow in an inclined three-dimensional fault zone system. To overcome this mathematical difficulty, a combination of the variable separation method and the integration elimination method has been used to derive the characteristic equation, which depends on the Rayleigh number and the inclined angle of the inclined three-dimensional fault zone. Using this characteristic equation, the critical Rayleigh number of the system can be numerically found as a function of the inclined angle of the three-dimensional fault zone. For a vertically oriented three-dimensional fault zone system, the critical Rayleigh number of the system can be explicitly derived from the characteristic equation. Comparison of the resulting critical Rayleigh number of the system with that previously derived in a vertically oriented three-dimensional fault zone has demonstrated that the characteristic equation of the Rayleigh number is correct and useful for investigating the convective instability of pore-fluid flow in the inclined three-dimensional fault zone system. The related numerical results from this investigation have indicated that: (1) the convective pore-fluid flow may take place in the inclined three-dimensional fault zone; (2) if the height of the fault zone is used as the characteristic length of the system, a decrease in the inclined angle of the inclined fault zone stabilizes the three-dimensional fundamental convective flow in the inclined three-dimensional fault zone system; (3) if the thickness of the stratum is used as the characteristic length of the system, a decrease in the inclined angle of the inclined fault zone destabilizes the three-dimensional fundamental convective flow in the inclined three-dimensional fault zone system; and that (4) the shape of the inclined three-dimensional fault zone may affect the convective instability of pore-fluid flow in the system. (C) 2004 Published by Elsevier B.V.