16 resultados para Classical Theories of Gravity
Resumo:
The focus of this paper is on the effect of gravity stretching on disturbed capillary jet instability. Break-up and droplet formation under low flows are simulated using finite difference solution of a one-dimensional approximation of disturbed capillary jet instability chosen from the work by Eggers and Dupont (J. Fluid Mech. 155 (1994) 289). Experiments were conducted using water and aqueous glycerol solutions to compare with simulations. We use a gravity parameter, G, which quantifies gravity stretching by relating flow velocity, orifice size and acceleration and is the reciprocal of the Fronde number. The optimum disturbance frequency Omega(opt) was found to be inversely proportional to G. However, this relationship appears to be complex for the range of G's investigated. At low G, the relationship between Omega(opt) and G appears to be linear but takes on a weakly decaying like trend as G increases. As flows are lowered, the satellite-free regime decreases, although experimental observation found that merging of main and satellite drops sometimes offset this effect to result in monodispersed droplet trains post break-up. Viscosity did not significantly affect the relationship between the disturbance frequency and G, although satellite drops could be seen more clearly close to the upper limit for instability at high G's. It is possible to define regimes of satellite formation under low flows by considering local wavenumbers at the point of instability. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Apropos the basal ganglia, the dominant striatum and globus pallidus internus (GPi) have been hypothesised to represent integral components of subcortical language circuitry. Working subcortical language theories, however, have failed thus far to consider a role for the STN in the mediation of linguistic processes, a structure recently defined as the driving force of basal ganglia output. The aim of this research was to investigate the impact of surgically induced functional inhibition of the STN upon linguistic abilities, within the context of established models of basal ganglia participation in language. Two males with surgically induced 'lesions' of the dominant and non-dominant dorsolateral STN, aimed at relieving Parkinsonian motor symptoms, served as experimental subjects. General and high-level language profiles were compiled for each subject up to 1 month prior to and 3 months following neurosurgery, within the drug-on state (i.e., when optimally medicated). Comparable post-operative alterations in linguistic performance were observed subsequent to surgically induced functional inhibition of the left and right STN. More specifically, higher proportions of reliable decline as opposed to improvement in post-operative performance were demonstrated by both subjects on complex language tasks, hypothesised to entail the interplay of cognitive-linguistic processes. The outcomes of the current research challenge unilateralised models of functional basal ganglia organisation with the proposal of a potential interhemispheric regulatory function for the STN in the mediation of high-level linguistic processes.
Resumo:
We show how to efficiently simulate a quantum many-body system with tree structure when its entanglement (Schmidt number) is small for any bipartite split along an edge of the tree. As an application, we show that any one-way quantum computation on a tree graph can be efficiently simulated with a classical computer.
Resumo:
The ergodic hypothesis asserts that a classical mechanical system will in time visit every available configuration in phase space. Thus, for an ergodic system, an ensemble average of a thermodynamic quantity can equally well be calculated by a time average over a sufficiently long period of dynamical evolution. In this paper, we describe in detail how to calculate the temperature and chemical potential from the dynamics of a microcanonical classical field, using the particular example of the classical modes of a Bose-condensed gas. The accurate determination of these thermodynamics quantities is essential in measuring the shift of the critical temperature of a Bose gas due to nonperturbative many-body effects.
Resumo:
Electronic Blocks are a new programming environment, designed specifically for children aged between three and eight years. As such, the design of the Electronic Block environment is firmly based on principles of developmentally appropriate practices in early childhood education. The Electronic Blocks are physical, stackable blocks that include sensor blocks, action blocks and logic blocks. Evaluation of the Electronic Blocks with both preschool and primary school children shows that the blocks' ease of use and power of engagement have created a compelling tool for the introduction of meaningful technology education in an early childhood setting. The key to the effectiveness of the Electronic Blocks lies in an adherence to theories of development and learning throughout the Electronic Blocks design process.