42 resultados para Cl-channels


Relevância:

70.00% 70.00%

Publicador:

Resumo:

There is a significant clinical need to identify novel ligands with high selectivity and potency for GABA(A), GABA(C) and glycine receptor Cl- channels. Two recently developed, yellow fluorescent protein variants (YFP-I152L and YFP-V163S) are highly sensitive to quench by small anions and are thus suited to reporting anionic influx into cells. The aim of this study was to establish the optimal conditions for using these constructs for high-throughput screening of GABA(A), GABA(C) and glycine receptors transiently expressed in HEK293 cells. We found that a 70% fluorescence reduction was achieved by quenching YFP-I152L with a 10 s influx of I- ions, driven by an extemal I- concentration of at least 50 mM. The fluorescence quench was rapid, with a mean time constant of 3 s. These responses were similar for all anion receptor types studied. We also show the assay is sufficiently sensitive to measure agonist and antagonist concentration-responses using either imaging- or photomultiplier-based detection systems. The robustness, sensitivity and low cost of this assay render it suited for high-throughput screening of transiently expressed anionic ligand-gated channels. (c) 2005 Elsevier Ireland Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. More than 1300 different mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) cause cystic fibrosis (CF), a disease characterized by deficient epithelial Cl- secretion and enhanced Na+ absorption. The clinical course of the disease is determined by the progressive lung disease. Thus, novel approaches in pharmacotherapy are based primarily on correction of the ion transport defect in the airways. 2. The current therapeutic strategies try to counteract the deficiency in Cl- secretion and the enhanced Na+ absorption. A number of compounds have been identified, such as genistein and xanthine derivatives, which directly activate mutant CFTR. Other compounds may activate alternative Ca2+-activated Cl- channels or basolateral K+ channels, which supply the driving force for Cl- secretion. Apart from that, Na+ channel blockers, such as phenamil and benzamil, are being explored, which counteract the hyperabsorption of NaCl in CF airways. 3. Clinical trials are under way using purinergic compounds such as the P2Y(2) receptor agonist INS365. Activation of P2Y(2) receptors has been found to both activate Cl- secretion and inhibit Na+ absorption. 4. The ultimate goal is to recover Cl- channel activity of mutant CFTR by either enhancing synthesis and expression of the protein or by activating silent CFTR Cl- channels. Strategies combining these drugs with compounds facilitating Cl- secretion and inhibiting Na+ absorption in vivo may have the best chance to counteract the ion transport defect in cystic fibrosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent studies on frog skin acini have challenged the question whether Cl- secretion or Na+ absorption in the airways is driven by luminal K+ channels in series to a basolateral K+ conductance. We examined the possible role of luminal K+ channels in electrolyte transport in mouse trachea in Ussing-chamber experiments. Tracheas of both normal and CFTR (-/-) mice showed a dominant amiloride-sensitive Na+ absorption under both, control conditions and after cAMP-dependent stimulation. The lumen-negative transepithelial voltage was enhanced after application of IBMX and forskolin and Cl- secretion was activated. Electrolyte secretion induced by IBMX and forskolin was inhibited by luminal glibenclamide and the blocker of basolateral Na(+)2Cl(-)K(+) cotransporter azosemide. Similarly, the compound 29313, a blocker of basolateral KCNQ1/KCNE3 K+ channels effectively blocked Cl- secretion when applied to either the luminal or basolateral side of the epithelium. RT-PCR analysis suggested expression of additional K+ channels in tracheal epithelial cells such as Slo1 and Kir6.2. However, we did not detect any functional evidence for expression of luminal K+ channels in mouse airways, using luminal 29313, clotrimazole and Ba2+ or different K+ channel toxins such as charybdotoxin, apamin and alpha-dendrotoxin. Thus, the present study demonstrates Cl- secretion in mouse airways, which depends on basolateral Na(+)2Cl(-)K(+) cotransport and luminal CFTR and non-CFTR Cl- channels. Cl- secretion is maintained by the activity of basolateral K+ channels, while no clear evidence was found for the presence of a luminal K+ conductance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes a chloride channel present in many cells. In cardiomyocytes, we report that multiple exon 1 usage and alternative splicing produces four CFTR transcripts, with different 5'-untranslated regions, CFTRTRAD-139, CFTR-1C/-1A, CFTR-1C, and CFTR-1B. CFTR transcripts containing the novel upstream exons (exons -1C, -1B, and -1A) represent more than 90% of cardiac expressed CFTR mRNA. Regulation of cardiac CFTR expression, in response to developmental and pathological stimuli, is exclusively due to the modulation of CFTR-1C and CFTR-1C/-1A expression. Upstream open reading frames have been identified in the 5'-untranslated regions of all CFTR transcripts that, in conjunction with adjacent stem-loop structures, modulate the efficiency of translation initiation at the AUG codon of the main CFTR coding region in CFTRTRAD-139 and CFTR-1C/-1A transcripts. Exon(-1A), only present in CFTR-1C/-1A transcripts, encodes an AUG codon that is in-frame with the main CFTR open reading frame, the efficient translation of which produces a novel CFTR protein isoform with a curtailed amino terminus. As the expression of this CFTR transcript parallels the spatial and temporal distribution of the cAMP-activated whole-cell current density in normal and diseased hearts, we suggest that CFTR-1C/-1A provides the molecular basis for the cardiac cAMP-activated chloride channel. Our findings provide further insight into the complex nature of in vivo CFTR expression, to which multiple mRNA transcripts, protein isoforms, and post-transcriptional regulatory mechanisms are now added.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Protease-activated receptors (PARs) are widely distributed in human airways. They couple to G-proteins and are activated after proteolytic cleavage of the N terminus of the receptor. Evidence is growing that PAR subtype 2 plays a pivotal role in inflammatory airway diseases, such as allergic asthma or bronchitis. However, nothing is known about the effects of PAR-2 on electrolyte transport in the native airways. PAR-2 is expressed in airway epithelial cells, where they are activated by mast cell tryptase, neutrophil proteinase 3, or trypsin. Recent studies produced conflicting results about the functional consequence of PAR-2 stimulation. Here we report that stimulation of PAR-2 receptors in mouse and human airways leads to a change in electrolyte transport and a shift from absorption to secretion. Although PAR-2 appears to be expressed on both sides of the epithelium, only basolateral stimulation results in inhibition of amiloride sensitive Na+ conductance and stimulation of both luminal Cl- channels and basolateral K+ channels. The present data indicate that these changes occur through activation of phospholipase C and increase in intracellular Ca2+, which activates basolateral SK4 K+ channels and luminal Ca2+-dependent Cl- channels. In addition, the present data suggest a PAR-2 mediated release of prostaglandin E2, which may contribute to the secretory response. In conclusion, these results provide further evidence for a role of PAR-2 in inflammatory airway disease: stimulation of these receptors may cause accumulation of airway surface liquid, which, however, may help to flush noxious stimuli away from the affected airways. ©2005 FASEB

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although glycine receptor Cl- channels (GlyRs) have long been known to mediate inhibitory neurotransmission onto spinal nociceptive neurons, their therapeutic potential for peripheral analgesia has received little attention. However, it has been shown that alpha 3-subunit-containing GlyRs are concentrated into regions of the spinal cord dorsal horn where nociceptive afferents terminate. Furthermore, inflammatory mediators specifically inhibit alpha 3-containing GlyRs, and deletion of the murine alpha 3 gene confers insensitivity to chronic inflammatory pain. This strongly implicates GlyRs in the inflammation-mediated disinhibition of centrally projecting nociceptive neurons. Future therapies aimed at specifically increasing current flux through alpha 3-containing GlyRs may prove effective in providing analgesia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Protective roles for protease-activated receptor-2 (PAR2) in the airways including activation of epithelial chloride (Cl-) secretion are based on the use of presumably PAR(2)-selective peptide agonists. To determine whether PAR(2) peptide-activated Cl- secretion from mouse tracheal epithelium is dependent on PAR(2), changes in ion conductance across the epithelium [short-circuit current (I-SC)] to PAR(2) peptides were measured in Ussing chambers under voltage clamp. In addition, epithelium and endothelium-dependent relaxations to these peptides were measured in two established PAR(2) bioassays, isolated ring segments of mouse trachea and rat thoracic aorta, respectively. Apical application of the PAR(2) peptide SLIGRL caused increases in I-SC, which were inhibited by three structurally different neurokinin receptor-1 (NK1R) antagonists and inhibitors of Cl- channels but not by capsaicin, the calcitonin gene-related peptide (CGRP) receptor antagonist CGRP(8-37), or the nonselective cyclooxygenase inhibitor indomethacin. Only high concentrations of trypsin caused an increase in I-SC but did not affect the responses to SLIGRL. Relaxations to SLIGRL in the trachea and aorta were unaffected by the NK1R antagonist nolpitantium (SR 140333) but were abolished by trypsin desensitization. The rank order of potency for a range of peptides in the trachea I-SC assay was 2-furoyl-LIGRL > SLCGRL > SLIGRL > SLIGRT > LSIGRL compared with 2-furoyl-LIGRL > SLIGRL > SLIGRT > SLCGRL (LSIGRL inactive) in the aorta relaxation assay. In the mouse trachea, PAR(2) peptides activate both epithelial NK1R coupled to Cl- secretion and PAR(2) coupled to prostaglandin E-2-mediated smooth muscle relaxation. Such a potential lack of specificity of these commonly used peptides needs to be considered when roles for PAR(2) in airway function in health and disease are determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the properties of calcium-activated chloride channels in inside-out membrane patches from the dendritic knobs of acutely dissociated rat olfactory receptor neurons. Patches typically contained large calcium-activated currents, with total conductances in the range 30-75 nS. The dose response curve for calcium exhibited an EC50 of about 26 mu M. In symmetrical NaCl solutions, the current-voltage relationship reversed at 0 mV and was linear between -80 and +70 mV. When the intracellular NaCl concentration was progressively reduced from 150 to 25 mM, the reversal potential changed in a manner consistent with a chloride-selective conductance. Indeed, modeling these data with the Goldman-Hodgkin-Katz equation revealed a P-Na/P-Cl of 0.034. The halide permeability sequence was P-Cl > P-F > P-I > P-Br indicating that permeation through the channel was dominated by ion binding sites with a high field strength. The channels were also permeable to the large organic anions, SCN-, acetate(-), and gluconate(-), with the permeability sequence P-Cl > P-SCN > gluconaie. Significant permeation to gluconate ions suggested that the channel pore had a minimum diameter of at least 5.8 Angstrom.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dependence of currents through the cyclic nucleotide-gated (CNG) channels of mammalian olfactory receptor neurons (ORNs) on the concentration of NaCl was studied in excised inside-out patches from their dendritic knobs using the patch-clamp technique. With a saturating concentration (100 mu M) of adenosine 3', 5'-cyclic monophosphate (cAMP), the changes in the reversal potential of macroscopic currents were studied at NaCl concentrations from 25 to 300 mM. In symmetrical NaCl solutions without the addition of divalent cations, the current-voltage relations were almost linear, reversing close to O mV. When the external NaCl concentration was maintained at 150 mM and the internal concentrations were varied, the reversal potentials of the cAMP-activated currents closely followed the Na+ equilibrium potential indicating that P-Cl/P-Na approximate to 0. However, at low external NaCl concentrations (less than or equal to 100 mM) there was some significant chloride permeability. Our results further indicated that Na+ currents through these channels: (i) did not obey the independence principle; (ii) showed saturation kinetics with K(m)s in the range of 100-150 mM and (iii) displayed a lack of voltage dependence of conductance in asymmetric solutions that suggested that ion-binding sites were situated midway along the channel. Together, these characteristics indicate that the permeation properties of the olfactory CNG channels are significantly different from those of photoreceptor CNG channels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

KCNQ1 (K(V)LQT1) K+ channels play an important role during electrolyte secretion in airways and colon. KCNQ1 was cloned recently from NaCl-secreting shark rectal glands. Here we study. the properties and regulation of the cloned sK(V)LQT1 expressed in Xenopus oocytes and Chinese hamster ovary (CHO) cells and compare the results with those obtained from in vitro perfused rectal gland tubules (RGT). The expression of sKCNQ1 induced voltage-dependent, delayed activated K+ currents, which were augmented by an increase in intracellular cAMP and Ca2+. The chromanol derivatives 293B and 526B potently inhibited sKCNQ1 expressed in oocytes and CHO cells, but had little effect on RGT electrolyte transport. Short-circuit currents in RGT were activated by alkalinization and were decreased by acidification. In CHO cells an alkaline pH activated and an acidic pH inhibited 293B-sensitive KCNQ1 currents. Noise analysis of the cell-attached basolateral membrane of RGT indicated the presence of low-conductance (

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The epithelial Na+ channel ENaC is inhibited when the cystic fibrosis transmembrane conductance regulator (CFTR) coexpressed in the same cell is activated by the cyclic adenosine monophosphate (cAMP)-dependent pathway. Regulation of ENaC by CFTR has been studied in detail in epithelial tissues from intestine and trachea and is also detected in renal cells. In the kidney, regulation of other membrane conductances might be the predominant function of CFTR. A similar inhibition of ENaC takes place when luminal purinergic receptors a re activated by 5 ' -adenosine triphosphate (ATP) or uridine triphosphate (UTP). Because both stimulation of purinergic receptors and activation of CFTR induce a Cl- conductance, it is likely that Cl- ions control ENaC activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. K(V)LQT1 (KCNQ1) is a voltage-gated K+ channel essential for repolarization of the heart action potential Defects in ion channels have been demonstrated in cardiac arrhythmia. This channel is inhibited potently by the chromanol 293B, The same compound has been shown to block cAMP-dependent electrolyte secretion in rat and human colon, Therefore, it was suggested that a K+ channel similar to K(V)LQT1 is expressed in the colonic epithelium. 2, In the present paper, expression of K(V)LQT1 and its function in colonic epithelial cells is described. Reverse transcription-polymerase chain reaction analysis of rat colonic mucosa demonstrated expression of K(V)LQT1 in both crypt cells and surface epithelium. When expressed in Xenopus oocytes, K(V)LQT1 induced a typical delayed activated K+ current. 3, As demonstrated, the channel activity could be further activated by increases in intracellular cAMP. These and other data support the concept that K(V)LQT1 is forming a component of the basolateral cAMP-activated Kf conductance in the colonic epithelium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activation of the CFTR Cl- channel inhibits epithelial Na+ channels (ENaC), according to studies on epithelial cells and overexpressing recombinant cells. Here we demonstrate that ENaC is inhibited during stimulation of the cystic fibrosis trans-membrance conductance regulator (CFTR) in Xenopus oocytes, independent of the experimental set-up and the magnitude of the whole-cell current. Inhibition of ENaC is augmented at higher CFTR Cl- currents. Similar to CFTR, ClC-0 Cl- currents also inhibit ENaC, as well as high extracellular Na+ and Cl- in partially permeabilized oocytes. Thus, inhibition of ENaC is not specific to CFTR and seems to be mediated by Cl-.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

K+ Channels and Membrane Potential in Endothelial Cells. The endothelium plays a vital role in the control of vascular functions, including modulation of tone; permeability and barrier properties; platelet adhesion and aggregation; and secretion of paracrine factors. Critical signaling events in many of these functions involve an increase in intracellular free Ca2+ concentration ([Ca2+](i)). This rise in [Ca2+](i) occurs via an interplay between several mechanisms, including release from intracellular stores, entry from the extracellular space through store depletion and second messenger-mediated processes, and the establishment of a favorable electrochemical gradient. The focus of this review centers on the role of potassium channels and membrane potential in the creation of a favorable electrochemical gradient for Ca2+ entry. In addition, evidence is examined for the existence of various classes of potassium channels and the possible influence of regional variation in expression and experimental conditions.