2 resultados para STOKES-RAMAN SCATTERING

em Université Laval Mémoires et thèses électroniques


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Le développement au cours des dernières décennies de lasers à fibre à verrouillage de modes permet aujourd’hui d’avoir accès à des sources fiables d’impulsions femtosecondes qui sont utilisées autant dans les laboratoires de recherche que pour des applications commerciales. Grâce à leur large bande passante ainsi qu’à leur excellente dissipation de chaleur, les fibres dopées avec des ions de terres rares ont permis l’amplification et la génération d’impulsions brèves de haute énergie avec une forte cadence. Cependant, les effets non linéaires causés par la faible taille du faisceau dans la fibre ainsi que la saturation de l’inversion de population du milieu compliquent l’utilisation d’amplificateurs fibrés pour l’obtention d’impulsions brèves dont l’énergie dépasse le millijoule. Diverses stratégies comme l’étirement des impulsions à des durées de l’ordre de la nanoseconde, l’utilisation de fibres à cristaux photoniques ayant un coeur plus large et l’amplification en parallèle ont permis de contourner ces limitations pour obtenir des impulsions de quelques millijoules ayant une durée inférieure à la picoseconde. Ce mémoire de maîtrise présente une nouvelle approche pour l’amplification d’impulsions brèves utilisant la diffusion Raman des verres de silice comme milieu de gain. Il est connu que cet effet non linéaire permet l’amplification avec une large bande passante et ce dernier est d’ailleurs couramment utilisé aujourd’hui dans les réseaux de télécommunications par fibre optique. Puisque l’adaptation des schémas d’amplification Raman existants aux impulsions brèves de haute énergie n’est pas directe, on propose plutôt un schéma consistant à transférer l’énergie d’une impulsion pompe quasi monochromatique à une impulsion signal brève étirée avec une dérive en fréquence. Afin d’évaluer le potentiel du gain Raman pour l’amplification d’impulsions brèves, ce mémoire présente un modèle analytique permettant de prédire les caractéristiques de l’impulsion amplifiée selon celles de la pompe et le milieu dans lequel elles se propagent. On trouve alors que la bande passante élevée du gain Raman des verres de silice ainsi que sa saturation inhomogène permettent l’amplification d’impulsions signal à une énergie comparable à celle de la pompe tout en conservant une largeur spectrale élevée supportant la compression à des durées très brèves. Quelques variantes du schéma d’amplification sont proposées, et leur potentiel est évalué par l’utilisation du modèle analytique ou de simulations numériques. On prédit analytiquement et numériquement l’amplification Raman d’impulsions à des énergies de quelques millijoules, dont la durée est inférieure à 150 fs et dont la puissance crête avoisine 20 GW.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Les lasers à fibre de haute puissance sont maintenant la solution privilégiée pour les applications de découpe industrielle. Le développement de lasers pour ces applications n’est pas simple en raison des contraintes qu’imposent les normes industrielles. La fabrication de lasers fibrés de plus en plus puissants est limitée par l’utilisation d’une fibre de gain avec une petite surface de mode propice aux effets non linéaires, d’où l’intérêt de développer de nouvelles techniques permettant l’atténuation de ceux-ci. Les expériences et simulations effectuées dans ce mémoire montrent que les modèles décrivant le lien entre la puissance laser et les effets non linéaires dans le cadre de l’analyse de fibres passives ne peuvent pas être utilisés pour l’analyse des effets non linéaires dans les lasers de haute puissance, des modèles plus généraux doivent donc développés. Il est montré que le choix de l’architecture laser influence les effets non linéaires. En utilisant l’équation de Schrödinger non linéaire généralisée, il a aussi été possible de montrer que pour une architecture en co-propagation, la diffusion Raman influence l’élargissement spectral. Finalement, les expériences et les simulations effectuées montrent qu’augmenter la réflectivité nominale et largeur de bande du réseau légèrement réfléchissant de la cavité permet d’atténuer la diffusion Raman, notamment en réduisant le gain Raman effectif.