2 resultados para STOKES
em Université Laval Mémoires et thèses électroniques
Resumo:
Cette thèse concerne la modélisation des interactions fluide-structure et les méthodes numériques qui s’y rattachent. De ce fait, la thèse est divisée en deux parties. La première partie concerne l’étude des interactions fluide-structure par la méthode des domaines fictifs. Dans cette contribution, le fluide est incompressible et laminaire et la structure est considérée rigide, qu’elle soit immobile ou en mouvement. Les outils que nous avons développés comportent la mise en oeuvre d’un algorithme fiable de résolution qui intégrera les deux domaines (fluide et solide) dans une formulation mixte. L’algorithme est basé sur des techniques de raffinement local adaptatif des maillages utilisés permettant de mieux séparer les éléments du milieu fluide de ceux du solide que ce soit en 2D ou en 3D. La seconde partie est l’étude des interactions mécaniques entre une structure flexible et un fluide incompressible. Dans cette contribution, nous proposons et analysons des méthodes numériques partitionnées pour la simulation de phénomènes d’interaction fluide-structure (IFS). Nous avons adopté à cet effet, la méthode dite «arbitrary Lagrangian-Eulerian» (ALE). La résolution fluide est effectuée itérativement à l’aide d’un schéma de type projection et la structure est modélisée par des modèles hyper élastiques en grandes déformations. Nous avons développé de nouvelles méthodes de mouvement de maillages pour aboutir à de grandes déformations de la structure. Enfin, une stratégie de complexification du problème d’IFS a été définie. La modélisation de la turbulence et des écoulements à surfaces libres ont été introduites et couplées à la résolution des équations de Navier-Stokes. Différentes simulations numériques sont présentées pour illustrer l’efficacité et la robustesse de l’algorithme. Les résultats numériques présentés attestent de la validité et l’efficacité des méthodes numériques développées.
Resumo:
La modélisation de la cryolite, utilisée dans la fabrication de l’aluminium, implique plusieurs défis, notament la présence de discontinuités dans la solution et l’inclusion de la difference de densité entre les phases solide et liquide. Pour surmonter ces défis, plusieurs éléments novateurs ont été développés dans cette thèse. En premier lieu, le problème du changement de phase, communément appelé problème de Stefan, a été résolu en deux dimensions en utilisant la méthode des éléments finis étendue. Une formulation utilisant un multiplicateur de Lagrange stable spécialement développée et une interpolation enrichie a été utilisée pour imposer la température de fusion à l’interface. La vitesse de l’interface est déterminée par le saut dans le flux de chaleur à travers l’interface et a été calculée en utilisant la solution du multiplicateur de Lagrange. En second lieu, les effets convectifs ont été inclus par la résolution des équations de Stokes dans la phase liquide en utilisant la méthode des éléments finis étendue aussi. Troisièmement, le changement de densité entre les phases solide et liquide, généralement négligé dans la littérature, a été pris en compte par l’ajout d’une condition aux limites de vitesse non nulle à l’interface solide-liquide pour respecter la conservation de la masse dans le système. Des problèmes analytiques et numériques ont été résolus pour valider les divers composants du modèle et le système d’équations couplés. Les solutions aux problèmes numériques ont été comparées aux solutions obtenues avec l’algorithme de déplacement de maillage de Comsol. Ces comparaisons démontrent que le modèle par éléments finis étendue reproduit correctement le problème de changement phase avec densités variables.