3 resultados para High silica glass
em Université Laval Mémoires et thèses électroniques
Resumo:
Au cours des années une variété des compositions de verre chalcogénure a été étudiée en tant qu’une matrice hôte pour les ions Terres Rares (TR). Pourtant, l’obtention d’une matrice de verre avec une haute solubilité des ions TR et la fabrication d’une fibre chalcogénure dopée au TR avec une bonne qualité optique reste toujours un grand défi. La présente thèse de doctorat se concentre sur l’étude de nouveaux systèmes vitreux comme des matrices hôtes pour le dopage des ions TR, ce qui a permis d’obtenir des fibres optiques dopées au TR qui sont transparents dans l’IR proche et moyenne. Les systèmes vitreux étudiés ont été basés sur le verre de sulfure d’arsenic (As2S3) co-dopé aux ions de Tm3+ et aux différents modificateurs du verre. Premièrement, l’addition de Gallium (Ga), comme un co-dopant, a été examinée et son influence sur les propriétés d’émission des ions de Tm a été explorée. Avec l’incorporation de Ga, la matrice d’As2S3 dopée au Tm a montré trois bandes d’émission à 1.2 μm (1H5→3H6), 1.4 μm (3H4→3F4) et 1.8 μm (3F4→3H6), sous l’excitation des longueurs d’onde de 698 nm et 800 nm. Les concentrations de Tm et de Ga ont été optimisées afin d’obtenir le meilleur rendement possible de photoluminescence. À partir de la composition optimale, la fibre Ga-As-S dopée au Tm3+ a été étirée et ses propriétés de luminescence ont été étudiées. Un mécanisme de formation structurale a été proposé pour ce système vitreux par la caractérisation structurale des verres Ga-As-S dopés au Tm3+, en utilisant la spectroscopie Raman et l’analyse de spectrométrie d’absorption des rayons X (EXAFS) à seuil K d’As, seuil K de Ga et seuil L3 de Tm et il a été corrélé avec les caractéristiques de luminescence de Tm. Dans la deuxième partie, la modification des verres As2S3 dopés au Tm3+, avec l’incorporation d’halogénures (Iode (I2)), a été étudiée en tant qu’une méthode pour l’adaptation des paramètres du procédé de purification afin d’obtenir une matrice de verre de haute pureté par distillation chimique. Les trois bandes d’émission susmentionnées ont été aussi bien observées pour ce système sous l’excitation à 800 nm. Les propriétés optiques, thermiques et structurelles de ces systèmes vitreux ont été caractérisées expérimentalement en fonction de la concentration d’I2 et de Tm dans le verre, où l’attention a été concentrée sur deux aspects principaux: l’influence de la concentration d’I2 sur l’intensité d’émission de Tm et les mécanismes responsables pour l’augmentation de la solubilité des ions de Tm dans la matrice d’As2S3 avec l’addition I2.
Resumo:
Le développement au cours des dernières décennies de lasers à fibre à verrouillage de modes permet aujourd’hui d’avoir accès à des sources fiables d’impulsions femtosecondes qui sont utilisées autant dans les laboratoires de recherche que pour des applications commerciales. Grâce à leur large bande passante ainsi qu’à leur excellente dissipation de chaleur, les fibres dopées avec des ions de terres rares ont permis l’amplification et la génération d’impulsions brèves de haute énergie avec une forte cadence. Cependant, les effets non linéaires causés par la faible taille du faisceau dans la fibre ainsi que la saturation de l’inversion de population du milieu compliquent l’utilisation d’amplificateurs fibrés pour l’obtention d’impulsions brèves dont l’énergie dépasse le millijoule. Diverses stratégies comme l’étirement des impulsions à des durées de l’ordre de la nanoseconde, l’utilisation de fibres à cristaux photoniques ayant un coeur plus large et l’amplification en parallèle ont permis de contourner ces limitations pour obtenir des impulsions de quelques millijoules ayant une durée inférieure à la picoseconde. Ce mémoire de maîtrise présente une nouvelle approche pour l’amplification d’impulsions brèves utilisant la diffusion Raman des verres de silice comme milieu de gain. Il est connu que cet effet non linéaire permet l’amplification avec une large bande passante et ce dernier est d’ailleurs couramment utilisé aujourd’hui dans les réseaux de télécommunications par fibre optique. Puisque l’adaptation des schémas d’amplification Raman existants aux impulsions brèves de haute énergie n’est pas directe, on propose plutôt un schéma consistant à transférer l’énergie d’une impulsion pompe quasi monochromatique à une impulsion signal brève étirée avec une dérive en fréquence. Afin d’évaluer le potentiel du gain Raman pour l’amplification d’impulsions brèves, ce mémoire présente un modèle analytique permettant de prédire les caractéristiques de l’impulsion amplifiée selon celles de la pompe et le milieu dans lequel elles se propagent. On trouve alors que la bande passante élevée du gain Raman des verres de silice ainsi que sa saturation inhomogène permettent l’amplification d’impulsions signal à une énergie comparable à celle de la pompe tout en conservant une largeur spectrale élevée supportant la compression à des durées très brèves. Quelques variantes du schéma d’amplification sont proposées, et leur potentiel est évalué par l’utilisation du modèle analytique ou de simulations numériques. On prédit analytiquement et numériquement l’amplification Raman d’impulsions à des énergies de quelques millijoules, dont la durée est inférieure à 150 fs et dont la puissance crête avoisine 20 GW.
Resumo:
Les zéolithes étant des matériaux cristallins microporeux ont démontré leurs potentiels et leur polyvalence dans un nombre très important d’applications. Les propriétés uniques des zéolithes ont poussé les chercheurs à leur trouver constamment de nouvelles utilités pour tirer le meilleur parti de ces matériaux extraordinaires. Modifier les caractéristiques des zéolithes classiques ou les combiner en synergie avec d’autres matériaux se trouvent être deux approches viables pour trouver encore de nouvelles applications. Dans ce travail de doctorat, ces deux approches ont été utilisées séparément, premièrement avec la modification morphologique de la ZSM-12 et deuxièmement lors de la formation des matériaux de type coeur/coquille (silice mésoporeuses@silicalite-1). La ZSM-12 est une zéolithe à haute teneur en silice qui a récemment attiré beaucoup l’attention par ses performances supérieures dans les domaines de l’adsorption et de la catalyse. Afin de synthétiser la ZSM-12 avec une pureté élevée et une morphologie contrôlée, la cristallisation de la zéolithe ZSM-12 a été étudiée en détail en fonction des différents réactifs chimiques disponibles (agent directeur de structure, types de silicium et source d’aluminium) et des paramètres réactionnels (l’alcalinité, ratio entre Na, Al et eau). Les résultats présentés dans cette étude ont montré que, contrairement à l’utilisation du structurant organique TEAOH, en utilisant un autre structurant, le MTEAOH, ainsi que le Al(o-i-Pr)3, cela a permis la formation de monocristaux ZSM-12 monodisperses dans un temps plus court. L’alcalinité et la teneur en Na jouent également des rôles déterminants lors de ces synthèses. Les structures de types coeur/coquille avec une zéolithe polycristalline silicalite-1 en tant que coquille, entourant un coeur formé par une microsphère de silice mésoporeuse (tailles de particules de 1,5, 3 et 20-45 μm) ont été synthétisés soit sous forme pure ou chargée avec des espèces hôtes métalliques. Des techniques de nucléations de la zéolithe sur le noyau ont été utilisées pour faire croitre la coquille de façon fiable et arriver à former ces matériaux. C’est la qualité des produits finaux en termes de connectivité des réseaux poreux et d’intégrité de la coquille, qui permet d’obtenir une stéréosélectivité. Ceci a été étudié en faisant varier les paramètres de synthèse, par exemple, lors de prétraitements qui comprennent ; la modification de surface, la nucléation, la calcination et le nombre d’étapes secondaires de cristallisation hydrothermale. En fonction de la taille du noyau mésoporeux et des espèces hôtes incorporées, l’efficacité de la nucléation se révèle être influencée par la technique de modification de surface choisie. En effet, les microsphères de silice mésoporeuses contenant des espèces métalliques nécessitent un traitement supplémentaire de fonctionnalisation chimique sur leur surface externe avec des précurseurs tels que le (3-aminopropyl) triéthoxysilane (APTES), plutôt que d’utiliser une modification de surface avec des polymères ioniques. Nous avons également montré que, selon la taille du noyau, de deux à quatre traitements hydrothermaux rapides sont nécessaires pour envelopper totalement le noyau sans aucune agrégation et sans dissoudre le noyau. De tels matériaux avec une enveloppe de tamis moléculaire cristallin peuvent être utilisés dans une grande variété d’applications, en particulier pour de l’adsorption et de la catalyse stéréo-sélective. Ce type de matériaux a été étudié lors d’une série d’expériences sur l’adsorption sélective du glycérol provenant de biodiesel brut avec des compositions différentes et à des températures différentes. Les résultats obtenus ont été comparés à ceux utilisant des adsorbants classiques comme par exemple du gel de sphères de silice mésoporeux, des zéolithes classiques, silicalite-1, Si-BEA et ZSM-5(H+), sous forment de cristaux, ainsi que le mélange physique de ces matériaux références, à savoir un mélange silicalite-1 et le gel de silice sphères. Bien que le gel de sphères de silice mésoporeux ait montré une capacité d’adsorption de glycérol un peu plus élevée, l’étude a révélé que les adsorbants mésoporeux ont tendance à piéger une quantité importante de molécules plus volumineuses, telles que les « fatty acid methyl ester » (FAME), dans leur vaste réseau de pores. Cependant, dans l’adsorbant à porosité hiérarchisée, la fine couche de zéolite silicalite-1 microporeuse joue un rôle de membrane empêchant la diffusion des molécules de FAME dans les mésopores composant le noyau/coeur de l’adsorbant composite, tandis que le volume des mésopores du noyau permet l’adsorption du glycérol sous forme de multicouches. Finalement, cette caractéristique du matériau coeur/coquille a sensiblement amélioré les performances en termes de rendement de purification et de capacité d’adsorption, par rapport à d’autres adsorbants classiques, y compris le gel de silice mésoporeuse et les zéolithes.