4 resultados para Durability.
em Université Laval Mémoires et thèses électroniques
Resumo:
Les substituts valvulaires disponibles actuellement comportent encore plusieurs lacunes. La disponibilité restreinte des allogreffes, les risques de coagulation associés aux valves mécaniques et la durabilité limitée des bioprothèses en tissu animal sont toutes des problématiques que le génie tissulaire a le potentiel de surmonter. Avec la méthode d’auto-assemblage, le seul support des cellules consiste en leur propre matrice extracellulaire, permettant la fabrication d’un tissu entièrement libre de matériau exogène. Ce projet a été précédé par ceux des doctorantes Catherine Tremblay et Véronique Laterreur, ayant respectivement développé une méthode de fabrication de valves moulées par auto-assemblage et une nouvelle version de bioréacteur. Au cours de cette maîtrise, le nouveau bioréacteur a été adapté à une utilisation stérile avec des tissus vivants et la méthode de fabrication de valves moulées a été modifiée puis éprouvée avec la production de 4 prototypes. Ces derniers n’ont pas permis d’obtenir des performances satisfaisantes en bioréacteur, motivant la conception d’une nouvelle méthode. Plutôt que de tenter de répliquer la forme native des valves cardiaques, des études récentes ont suggéré une géométrie tubulaire. Cela permettrait une fabrication simplifiée, une implantation rapide, et un encombrement minimal en vue d’opérations percutanées. Cette approche minimaliste s’accorde bien avec la méthode d’auto-assemblage, qui a déjà été utilisée pour la production de vaisseaux de petits diamètres. Un total de 11 tubes ont été produits par l’enroulement de feuillets fibroblastiques auto-assemblés, puis ont été transférés sur des mandrins de diamètre inférieur, leur permettant de se contracter librement. La caractérisation de deux tubes contrôles a démontré que cette phase de précontraction était bénéfique pour les propriétés du tissu en plus de prévenir la contraction en bioréacteur. Les prototypes finaux pouvaient supporter un écoulement physiologique pulmonaire. Cette nouvelle méthode montre que le procédé d’auto-assemblage a le potentiel d’être utilisé pour fabriquer des valves cardiaques tubulaires.
Resumo:
Face à la diminution des ressources énergétiques et à l’augmentation de la pollution des énergies fossiles, de très nombreuses recherches sont actuellement menées pour produire de l’énergie propre et durable et pour réduire l’utilisation des sources d’énergies fossiles caractérisées par leur production intrinsèque des gaz à effet de serre. La pile à combustible à membrane échangeuse de protons (PEMFC) est une technologie qui prend de plus en plus d’ampleur pour produire l’énergie qui s’inscrit dans un contexte de développement durable. La PEMFC est un dispositif électrochimique qui fonctionne selon le principe inverse de l’électrolyse de l’eau. Elle convertit l’énergie de la réaction chimique entre l’hydrogène et l’oxygène (ou l’air) en puissance électrique, chaleur et eau; son seul rejet dans l’atmosphère est de la vapeur d’eau. Une pile de type PEMFC est constituée d’un empilement Électrode-Membrane-Électrode (EME) où la membrane consiste en un électrolyte polymère solide séparant les deux électrodes (l’anode et la cathode). Cet ensemble est intégré entre deux plaques bipolaires (BP) qui permettent de collecter le courant électrique et de distribuer les gaz grâce à des chemins de circulation gravés sur chacune de ses deux faces. La plupart des recherches focalisent sur la PEMFC afin d’améliorer ses performances électriques et sa durabilité et aussi de réduire son coût de production. Ces recherches portent sur le développement et la caractérisation des divers éléments de ce type de pile; y compris les éléments les plus coûteux et les plus massifs, tels que les plaques bipolaires. La conception de ces plaques doit tenir compte de plusieurs paramètres : elles doivent posséder une bonne perméabilité aux gaz et doivent combiner les propriétés de résistance mécanique, de stabilité chimique et thermique ainsi qu’une conductivité électrique élevée. Elles doivent aussi permettre d’évacuer adéquatement la chaleur générée dans le cœur de la cellule. Les plaques bipolaires métalliques sont pénalisées par leur faible résistance à la corrosion et celles en graphite sont fragiles et leur coût de fabrication est élevé (dû aux phases d’usinage des canaux de cheminement des gaz). C’est pourquoi de nombreuses recherches sont orientées vers le développement d’un nouveau concept de plaques bipolaires. La voie la plus prometteuse est de remplacer les matériaux métalliques et le graphite par des composites à matrice polymère. Les plaques bipolaires composites apparaissent attrayantes en raison de leur facilité de mise en œuvre et leur faible coût de production mais nécessitent une amélioration de leurs propriétés électriques et mécaniques, d’où l’objectif principal de cette thèse dans laquelle on propose: i) un matériau nanocomposite développé par extrusion bi-vis qui est à base de polymères chargés d’additifs solides conducteurs, incluant des nanotubes de carbone. ii) fabriquer un prototype de plaque bipolaire à partir de ces matériaux en utilisant le procédé de compression à chaud avec un refroidissement contrôlé. Dans ce projet, deux polymères thermoplastiques ont été utilisés, le polyfluorure de vinylidène (PVDF) et le polyéthylène téréphtalate (PET). Les charges électriquement conductrices sélectionnées sont: le noir de carbone, le graphite et les nanotubes de carbones. La combinaison de ces charges conductrices a été aussi étudiée visant à obtenir des formulations optimisées. La conductivité électrique à travers l’épaisseur des échantillons développés ainsi que leurs propriétés mécaniques ont été soigneusement caractérisées. Les résultats ont montré que non seulement la combinaison entre les charges conductrices influence les propriétés électriques et mécaniques des prototypes développés, mais aussi la distribution de ces charges (qui de son côté dépend de leur nature, leur taille et leurs propriétés de surface), avait aidé à améliorer les propriétés visées. Il a été observé que le traitement de surface des nanotubes de carbone avait aidé à l’amélioration de la conductivité électrique et la résistance mécanique des prototypes. Le taux de cristallinité généré durant le procédé de moulage par compression des prototypes de plaques bipolaires ainsi que la cinétique de cristallisation jouent un rôle important pour l’optimisation des propriétés électriques et mécaniques visées.
Resumo:
La présente étude avait pour objectif de contribuer à une meilleure compréhension de la granulation des bois feuillus par l’évaluation de la possibilité technique de transformer des bois feuillus de faible vigueur (l’érable à sucre et le bouleau jaune) en granules conventionnels et granules de haute qualité, un type prometteur de transport énergétique. Trois études individuelles ont été réalisées et présentées dans cette thèse. La première étude visait à déterminer s’il y a des changements de teneur en extractibles, cendres, et lignine du bois entre les classes de vigueur des arbres. Les teneurs plus élevées en extractibles et en lignine dans les arbres peu vigoureux ont suggéré que ces derniers sont plus appropriés par rapport aux arbres vigoureux pour la conversion en biocombustibles solides. La deuxième étude visait à optimiser des procédés de granulation des bois feuillus. L’étude a porté sur l’influence des paramètres du procédé (la température et la force de compression) et des caractéristiques de la matière première (la taille des particules et la teneur en humidité) sur les propriétés physiques et mécaniques des granules de bois. Le procédé de granulation doit être effectué à une température d’environ 100 °C pour minimiser la force de friction dans le granulateur et à une teneur en humidité d’environ 11,2% pour maximiser la masse volumique et la résistance mécanique des granules produites. Cette étude a également confirmé que les arbres de faible qualité sont plus appropriés pour la fabrication de granules de bois que les arbres vigoureux. La troisième étude visait l’élaboration de granules de haute qualité. L’eau chaude à température élevée a été utilisée pour modifier les propriétés de la matière première avant granulation. Les caractéristiques de granulation du matériau traité ont été significativement améliorées. Les granules produites ont montré des propriétés améliorées incluant une plus faible teneur en cendres, une plus haute densité énergétique, une meilleure résistance à l’eau, et une meilleure résistance mécanique. Les résultats obtenus de toutes ces études ont démontré la nécessité de bien connaître les fondements de la granulation des bois feuillus et les solutions pratiques pour l’utilisation d’arbres feuillus de faible qualité, le premier peut être applicable pour le développement de procédés de granulation et le dernier peut contribuer à long terme à la restauration des forêts feuillues dégradées en termes de santé des forêts et de leur valeur.
Resumo:
Les méthodes de design et de construction des routes développés dans le sud canadien ont maintenant besoin d’être adaptés aux environnements nordiques du pays afin de prévenir le dégel dramatique du pergélisol lors de la construction d’une nouvelle route. De plus, le réchauffement climatique occasionne présentement d’importants problèmes de stabilité des sols dans le nord canadien. Ces facteurs causent des pertes importantes au niveau des capacités fonctionnelles et structurales de l’Alaska Highway au Yukon sur un segment de plus de 200 km situé entre le village de Destruction Bay et la frontière de l’Alaska. Afin de trouver des solutions rentables à long terme, le ministère du transport du Yukon (en collaboration avec le Federal Highway Administration du gouvernement américain, Transports Canada, l’Université Laval, l’Université de Montréal et l’Alaska University transportation Center) a mis en place 12 sections d’essais de 50 mètres de longueur sur l’autoroute de l’Alaska près de Beaver Creek en 2008. Ces différentes sections d’essais ont été conçues pour évaluer une ou plusieurs méthodes combinées de stabilisation thermique telles que le drain thermique, le remblai à convection d’air, le pare-neige / pare-soleil, le remblai couvert de matières organiques, les drains longitudinaux, le déblaiement de la neige sur les pentes et la surface réfléchissante. Les objectifs spécifiques de la recherche sont 1) d’établir les régimes thermiques et les flux de chaleur dans chacune des sections pour les 3 premières années de fonctionnement ; 2) de documenter les facteurs pouvant favoriser ou nuire à l’efficacité des systèmes de protection et ; 3) de déterminer le rapport coûts/bénéfices à long terme pour chacune des techniques utilisées. Pour ce faire, une nouvelle méthode d’analyse, basée sur la mesure de flux d’extraction de chaleur Hx et d’induction Hi à l’interface entre le remblai et le sol naturel, a été utilisée dans cette étude. Certaines techniques de protection du pergélisol démontrent un bon potentiel durant leurs 3 premières années de fonctionnement. C’est le cas pour le remblai à convection d’air non-couvert, le remblai à convection d’air pleine largeur, les drains longitudinaux, le pare-soleil / pare-neige et la surface réfléchissante. Malheureusement, des problèmes dans l’installation des drains thermiques ont empêché une évaluation complète de leur efficacité.