12 resultados para Dioxyde de carbone
em Université Laval Mémoires et thèses électroniques
Resumo:
En République Démocratique du Congo (RDC), les savanes couvrent 76,8 millions d’hectares et constituent le second type d’écosystème après les forêts denses qui représentent 10% des forêts au niveau mondial. Ces formations herbeuses et arbustives offrent des potentialités importantes de séquestration du dioxyde de carbone pouvant contribuer par le fait même à la lutte contre le réchauffement climatique. C’est dans cette optique que se situe cette thèse intitulée « Évolution naturelle de savanes mises en défens à Ibi-village sur le plateau des Bateke en République Démocratique du Congo» dans le cadre du projet puits carbone d’IBI-Bateke. L’objectif général de notre recherche est d’étudier l’évolution naturelle en absence de feu de savanes situées dans des zones climatiques avec précipitations abondantes. Le plateau des Bateke nous a servi d’analyse de cas. Les inventaires floristiques et dendrométriques de la strate arbustive et arborescente de nos dispositifs hiérarchiques, ont permis de suivre ce processus naturel en tenant compte du gradient écologique dans les trois types de formations végétales (îlot forestier, la galerie forestière et la plantation d’Acacia auriculiformis). Nous avons mis en défens des savanes arbustives du plateau des Bateke pour étudier leur évolution naturelle vers une forêt, leur établissement, qualité, régénération forestière et en déterminer le taux de séquestration du carbone à l’aide des équations allométriques de Chave et al. (2005). Nous avons obtenu des valeurs moyennes de 107,477 t/ha de biomasse totale soit 51,05 Mg C/ha dans la galerie forestière, 103,772 t/ha de biomasse totale soit 49,29 Mg C/ha dans l’Îlot forestier, et 22,336 t/ha de biomasse totale soit 10,60 Mg C/ha dans la plantation. La mise en défens a stimulé l’installation des espèces forestières, et par le fait même accéléré la production de biomasse et donc la fixation de carbone. La comparaison de la richesse et la diversité spécifiques de l’Îlot et la galerie montre 22 familles botaniques inventoriées avec 55 espèces dans l’îlot forestier contre 27 familles dont 58 espèces dans la galerie. L’analyse canonique réalisée entre les variables de croissance et les variables environnementales révèle qu’il existe effectivement des relations fortes d’interdépendance entre les deux groupes de variables considérées. Cette méthodologie appropriée à la présente étude n’avait jamais été évoquée ni proposée par des études antérieures effectuées par d’autres chercheurs au plateau des Bateke. Mots Clés : Galerie forestière, Îlot forestier, mise en défens, plantation d’Acacia auriculiformis, reforestation, régénération naturelle, République Démocratique du Congo, savanes.
Diversité microbienne associée au cycle du méthane dans les mares de fonte du pergélisol subarctique
Resumo:
La fonte et l’effondrement du pergélisol riche en glace dans la région subarctique du Québec ont donné lieu à la formation de petits lacs (mares de thermokarst) qui émettent des gaz à effet de serre dans l’atmosphère tels que du dioxyde de carbone et du méthane. Pourtant, la composition de la communauté microbienne qui est à la base des processus biogéochimiques dans les mares de fonte a été très peu étudiée, particulièrement en ce qui concerne la diversité et l’activité des micro-organismes impliqués dans le cycle du méthane. L’objectif de cette thèse est donc d’étudier la diversité phylogénétique et fonctionnelle des micro-organismes dans les mares de fonte subarctiques en lien avec les caractéristiques de l’environnement et les émissions de méthane. Pour ce faire, une dizaine de mares ont été échantillonnées dans quatre vallées situées à travers un gradient de fonte du pergélisol, et disposant de différentes propriétés physico-chimiques. Selon les vallées, les mares peuvent être issues de la fonte de palses (buttes de tourbe, à dominance organique) ou de lithalses (buttes de sol à dominance minérale) ce qui influence la nature du carbone organique disponible pour la reminéralisation microbienne. Durant l’été, les mares étaient fortement stratifiées; il y avait un fort gradient physico-chimique au sein de la colonne d’eau, avec une couche d’eau supérieure oxique et une couche d’eau profonde pauvre en oxygène ou anoxique. Pour identifier les facteurs qui influencent les communautés microbiennes, des techniques de séquençage à haut débit ont été utilisées ciblant les transcrits des gènes de l’ARNr 16S et des gènes impliqués dans le cycle du méthane : mcrA pour la méthanogenèse et pmoA pour la méthanotrophie. Pour évaluer l’activité des micro-organismes, la concentration des transcrits des gènes fonctionnels a aussi été mesurée avec des PCR quantitatives (qPCR). Les résultats montrent une forte dominance de micro-organismes impliqués dans le cycle du méthane, c’est-à-dire des archées méthanogènes et des bactéries méthanotrophes. L’analyse du gène pmoA indique que les bactéries méthanotrophes n’étaient pas seulement actives à la surface, mais aussi dans le fond de la mare où les concentrations en oxygène étaient minimales; ce qui est inattendu compte tenu de leur besoin en oxygène pour consommer le méthane. En général, la composition des communautés microbiennes était principalement influencée par l’origine de la mare (palse ou lithalse), et moins par le gradient de dégradation du pergélisol. Des variables environnementales clefs comme le pH, le phosphore et le carbone organique dissous, contribuent à la distinction des communautés microbiennes entre les mares issues de palses ou de lithalses. Avec l’intensification des effets du réchauffement climatique, ces communautés microbiennes vont faire face à des changements de conditions qui risquent de modifier leur composition taxonomique, et leurs réponses aux changements seront probablement différentes selon le type de mares. De plus, dans le futur les conditions d’oxygénation au sein des mares seront soumises à des modifications majeures associées avec un changement dans la durée des périodes de fonte de glace et de stratification. Ce type de changement aura un impact sur l’équilibre entre la méthanogenèse et la méthanotrophie, et affectera ainsi les taux d’émissions de méthane. Cependant, les résultats obtenus dans cette thèse indiquent que les archées méthanogènes et les bactéries méthanotrophes peuvent développer des stratégies pour survivre et rester actives au-delà des limites de leurs conditions d’oxygène habituelles.
Resumo:
Les anodes de carbone sont des éléments consommables servant d’électrode dans la réaction électrochimique d’une cuve Hall-Héroult. Ces dernières sont produites massivement via une chaine de production dont la mise en forme est une des étapes critiques puisqu’elle définit une partie de leur qualité. Le procédé de mise en forme actuel n’est pas pleinement optimisé. Des gradients de densité importants à l’intérieur des anodes diminuent leur performance dans les cuves d’électrolyse. Encore aujourd’hui, les anodes de carbone sont produites avec comme seuls critères de qualité leur densité globale et leurs propriétés mécaniques finales. La manufacture d’anodes est optimisée de façon empirique directement sur la chaine de production. Cependant, la qualité d’une anode se résume en une conductivité électrique uniforme afin de minimiser les concentrations de courant qui ont plusieurs effets néfastes sur leur performance et sur les coûts de production d’aluminium. Cette thèse est basée sur l’hypothèse que la conductivité électrique de l’anode n’est influencée que par sa densité considérant une composition chimique uniforme. L’objectif est de caractériser les paramètres d’un modèle afin de nourrir une loi constitutive qui permettra de modéliser la mise en forme des blocs anodiques. L’utilisation de la modélisation numérique permet d’analyser le comportement de la pâte lors de sa mise en forme. Ainsi, il devient possible de prédire les gradients de densité à l’intérieur des anodes et d’optimiser les paramètres de mise en forme pour en améliorer leur qualité. Le modèle sélectionné est basé sur les propriétés mécaniques et tribologiques réelles de la pâte. La thèse débute avec une étude comportementale qui a pour objectif d’améliorer la compréhension des comportements constitutifs de la pâte observés lors d’essais de pressage préliminaires. Cette étude est basée sur des essais de pressage de pâte de carbone chaude produite dans un moule rigide et sur des essais de pressage d’agrégats secs à l’intérieur du même moule instrumenté d’un piézoélectrique permettant d’enregistrer les émissions acoustiques. Cette analyse a précédé la caractérisation des propriétés de la pâte afin de mieux interpréter son comportement mécanique étant donné la nature complexe de ce matériau carboné dont les propriétés mécaniques sont évolutives en fonction de la masse volumique. Un premier montage expérimental a été spécifiquement développé afin de caractériser le module de Young et le coefficient de Poisson de la pâte. Ce même montage a également servi dans la caractérisation de la viscosité (comportement temporel) de la pâte. Il n’existe aucun essai adapté pour caractériser ces propriétés pour ce type de matériau chauffé à 150°C. Un moule à paroi déformable instrumenté de jauges de déformation a été utilisé pour réaliser les essais. Un second montage a été développé pour caractériser les coefficients de friction statique et cinétique de la pâte aussi chauffée à 150°C. Le modèle a été exploité afin de caractériser les propriétés mécaniques de la pâte par identification inverse et pour simuler la mise en forme d’anodes de laboratoire. Les propriétés mécaniques de la pâte obtenues par la caractérisation expérimentale ont été comparées à celles obtenues par la méthode d’identification inverse. Les cartographies tirées des simulations ont également été comparées aux cartographies des anodes pressées en laboratoire. La tomodensitométrie a été utilisée pour produire ces dernières cartographies de densité. Les résultats des simulations confirment qu’il y a un potentiel majeur à l’utilisation de la modélisation numérique comme outil d’optimisation du procédé de mise en forme de la pâte de carbone. La modélisation numérique permet d’évaluer l’influence de chacun des paramètres de mise en forme sans interrompre la production et/ou d’implanter des changements coûteux dans la ligne de production. Cet outil permet donc d’explorer des avenues telles la modulation des paramètres fréquentiels, la modification de la distribution initiale de la pâte dans le moule, la possibilité de mouler l’anode inversée (upside down), etc. afin d’optimiser le processus de mise en forme et d’augmenter la qualité des anodes.
Resumo:
La croissance du phytoplancton est limitée par les faibles concentrations de fer (Fe) dans près de 40% de l’océan mondial. Le Pacifique subarctique Nord-Est représente une de ces zones limitées en fer et désignées High Nutrient - Low Chlorophyll (HNLC). Cet écosystème, dominé par des cellules de petite taille telles les prymnésiophytes, est caractérisé par de très faibles concentrations estivales de chlorophylle a et de fortes concentrations de macronutriments. Il a été maintes fois démontré que les ajouts de fer, sous différentes formes chimiques (habituellement FeSO4), dans les zones HNLC, stimulent la croissance et modifient la structure des communautés planctoniques en favorisant la croissance des cellules de grande taille, notamment les diatomées. Ces effets sur la communauté planctonique ont le potentiel d’influencer les grands mécanismes régulateurs du climat, tels la pompe biologique de carbone et la production de diméthylsulfure (DMS). Les poussières provenant des déserts du nord de la Chine sont reconnues depuis longtemps comme une source sporadique importante de fer pour le Pacifique Nord-Est. Malgré leur importance potentielle, l’influence directe exercée par ces poussières sur l’écosystème planctonique de cette zone HNLC n’a jamais été étudiée. Il s’agit d’une lacune importante puisque le fer associé aux poussières est peu soluble dans l’eau de mer, que la proportion biodisponible n’est pas connue et que les poussières peuvent avoir un effet inhibiteur chez le phytoplancton. Cette thèse propose donc, dans un premier temps, de mesurer pour la première fois l’effet de la fertilisation de la communauté planctonique du Pacifique Nord-Est par un gradient de concentrations de poussières désertiques naturelles. Cette première expérimentation a démontré que le fer contenu dans les poussières asiatiques est biodisponible et qu’une déposition équivalente à celles prenant place au printemps dans le Pacifique Nord-Est peut résulter en une stimulation significative de la prise de nutriments et de la croissance du phytoplancton. Mes travaux ont également montré que l’ajout de 0,5 mg L-1 de poussières peut résulter en la production d’autant de biomasse algale que l’ajout de FeSO4, l’espèce chimique utilisée lors des expériences d’enrichissement en fer à grande échelle. Cependant, les ajouts de FeSO4 favorisent davantage les cellules de petite taille que les ajouts de poussières, observation démontrant que le FeSO4 n’est pas un proxy parfait des poussières asiatiques. Dans un deuxième temps, je me suis intéressée à une source alternative de fer atmosphérique, les cendres volcaniques. Mon intérêt pour cette source de fer a été attisé par les observations d’une floraison spectaculaire dans le Pacifique Nord-Est, ma région d’étude, associée à l’éruption de 2008 du volcan Kasatochi dans les îles Aléoutiennes. Forte de mon expérience sur les poussières, j’ai quantifié l’effet direct de ces cendres volcaniques sur la communauté planctonique du Pacifique Nord-Est. Mes résultats ont montré que le fer contenu dans les cendres volcaniques est également biodisponible pour le phytoplancton. Ils ont également montré que cette source de fer peut être aussi importante que les poussières désertiques dans la régulation de la croissance du phytoplancton dans cette partie de l’océan global à l’échelle millénaire. Dans un troisième temps, j’ai estimé comment l’acidification des océans modulera les réponses des communautés planctoniques aux dépositions naturelles de fer mises en évidence lors de mes expériences précédentes. Pour ce faire, j’ai effectué des enrichissements de poussière dans de l’eau de mer au pH actuel de 8.0 et dans l’eau de mer acidifiée à un pH de 7.8. Mes résultats ont montré une diminution du taux de croissance du phytoplancton dans le milieu acidifié mais pas de changement notable dans la structure de la communauté. Les ajouts de poussières et de cendres, de même que les variations de pH, n’ont pas eu d’effet significatif sur la production de DMS et de son précurseur le diméthylsulfoniopropionate (DMSP), probablement en raison de la courte durée (4 jours) des expériences. L’ensemble des résultats de cette thèse montre que le fer contenu dans diverses sources atmosphériques naturelles est biodisponible pour le phytoplancton du Pacifique Nord-Est et que des taux de déposition réalistes peuvent stimuler la croissance de manière notable dans les premiers jours suivant une tempête désertique ou une éruption volcanique. Finalement, les résultats de mes expériences à stresseurs multiples Fer/acidification suggèrent une certaine résistance des communautés phytoplanctoniques à la diminution du pH prédite d’ici la fin du siècle pour les eaux de surface des océans.
Resumo:
Environ 90% des composés produits industriellement sont fabriqués à l’aide de catalyseurs. C’est pourquoi la conception de catalyseurs toujours plus performants pour améliorer les procédés industriels actuels est toujours d’intérêt. De la grande variété de complexes avec des métaux de transition rapportés jusqu’à présent, les complexes zwitterioniques attirent notre attention par leurs activités catalytiques souvent supérieures aux complexes cationiques normaux. Un complexe métallique zwitterionique est un fragment métal-ligand neutre où la charge positive est située sur le centre métallique et où la charge négative est délocalisée sur un des ligands liés au métal. Nous proposons la synthèse de ligands anioniques phosphine comportant des groupements borates et boratabenzènes. Cette dernière espèce est un cycle à 6 membres où l’un des atomes de carbone est remplacé par un atome de bore et qui est négativement chargé. La capacité de ces phosphines anioniques à se lier à un centre métallique à l’aide de la paire libre du phosphore est due à la nature du lien P-B qui défavorise l’interaction entre la paire libre du phosphore et l’orbitale p vide du bore. Les propriétés de di-tert-butylphosphido-boratabenzène (DTBB) comme ligand phosphine anionique hautement donneur et encombré ainsi que la découverte de ses modes de coordination inhabituels pour stabiliser les métaux de transition insaturés ont été étudiés au cours de ce travail. De nouvelles perspectives sur les modes de coordination de phosphido-boratabenzène et la force de l’interaction du lien P-B seront discutées ainsi que les applications catalytiques. Nous avons d’abord étudié la coordination η1 avec des complexes de fer, ce qui nous a fourni des données quantitatives précieuses sur la capacité du DTBB d’agir comme ligand très donneur par rapport aux autres ligands donneurs bien connus. La capacité du DTBB à changer de mode de coordination pour soutenir les besoins électroniques du métal a été démontrée par la découverte d’une nouvelle espèce ferrocenyl phosphido-boratabenzène et sa nucléophilie a été étudiée. Au meilleur de notre connaissance, aucun exemple d’un ligand boratabenzène coordonné aux métaux du groupe 11 n’existe dans la littérature. Voilà pourquoi nous avons décidé d’explorer les modes de coordination du ligand DTBB avec Cu(I), Ag(I) et Au(I). A notre grande surprise, le ligand DTBB est capable de stabiliser les métaux du groupe 11 aux états d’oxydation faibles par une liaison MP qui est une coordination du type η1, un mode de coordination guère observé pour les ligands boratabenzène. Pendant nos travaux, notre attention s’est tournée vers la synthèse d’un complexe de rhodium(I) afin de tester son utilité en catalyse. A notre grande satisfaction, le complexe Rh-DTBB agit comme un précatalyseur pour l’hydrogénation des alcènes et alcynes à la température ambiante et à pression atmosphérique et son activité est comparable à celle du catalyseur de Wilkinson. Dans un désir d’élargir les applications de notre recherche, notre attention se tourna vers l’utilisation des composés du bore autres que le boratabenzène. Nous avons décidé de synthétiser une nouvelle espèce phosphido-borate encombrée. Lorsqu’elle réagit avec des métaux, l’espèce phosphido-borate subit un clivage de la liaison P-B. Toutefois, cette observation met en évidence la singularité et les avantages de la stabilité de la liaison P-B lors de l’utilisation du fragment boratabenzène. Ces observations enrichissent notre compréhension des conditions dans lesquelles la liaison P-B du ligand DTBB peut être clivée. Ces travaux ont mené à la découverte d’un nouveau ligand ansa-boratabenzène avec une chimie de coordination prometteuse.
Resumo:
Le bois subit une demande croissante comme matériau de construction dans les bâtiments de grandes dimensions. Ses qualités de matériau renouvelable et esthétique le rendent attrayant pour les architectes. Lorsque comparé à des produits fonctionnellement équivalents, il apparait que le bois permet de réduire la consommation d’énergie non-renouvelable. Sa transformation nécessite une quantité d’énergie inférieure que l’acier et le béton. Par ailleurs, par son origine biologique, une structure en bois permet de stocker du carbone biogénique pour la durée de vie du bâtiment. Maintenant permis jusqu’à six étages de hauteur au Canada, les bâtiments de grande taille en bois relèvent des défis de conception. Lors du dimensionnement des structures, les zones des connecteurs sont souvent les points critiques. Effectivement, les contraintes y sont maximales. Les structures peuvent alors apparaitre massives et diminuer l’innovation architecturale. De nouvelles stratégies doivent donc être développées afin d’améliorer la résistance mécanique dans les zones de connecteurs. Différents travaux ont récemment porté sur la création ou l’amélioration de types d’assemblage. Dans cette étude, l’accent est mis sur le renforcement du bois utilisé dans la région de connexion. L’imprégnation a été choisie comme solution de renfort puisque la littérature démontre qu’il est possible d’augmenter la dureté du bois avec cette technique. L’utilisation de cette stratégie de renfort sur l’épinette noire (Picea Mariana (Mill.) BSP) pour une application structurale est l’élément de nouveauté dans cette recherche. À défaut d’effectuer une imprégnation jusqu’au coeur des pièces, l’essence peu perméable de bois employée favorise la création d’une mince couche en surface traitée sans avoir à utiliser une quantité importante de produits chimiques. L’agent d’imprégnation est composé de 1,6 hexanediol diacrylate, de triméthylopropane tricacrylate et d’un oligomère de polyester acrylate. Une deuxième formulation contenant des nanoparticules de SiO2 a permis de vérifier l’effet des nanoparticules sur l’augmentation de la résistance mécanique du bois. Ainsi, dans ce projet, un procédé d’imprégnation vide-pression a servi à modifier un nouveau matériau à base de bois permettant des assemblages plus résistants mécaniquement. Le test de portance locale à l’enfoncement parallèle au fil d’un connecteur de type tige a été réalisé afin de déterminer l’apport du traitement sur le bois utilisé comme élément de connexion. L’effet d’échelle a été observé par la réalisation du test avec trois diamètres de boulons différents (9,525 mm, 12,700 mm et 15,875 mm). En outre, le test a été effectué selon un chargement perpendiculaire au fil pour le boulon de moyen diamètre (12,700 mm). La corrélation d’images numériques a été utilisée comme outil d’analyse de la répartition des contraintes dans le bois. Les résultats ont démontré une portance du bois plus élevée suite au traitement. Par ailleurs, l’efficacité est croissante lorsque le diamètre du boulon diminue. C’est un produit avec une valeur caractéristique de la portance locale parallèle au fil de 79% supérieure qui a été créé dans le cas du test avec le boulon de 9,525 mm. La raideur du bois a subi une augmentation avoisinant les 30%. Suite au traitement, la présence d’une rupture par fissuration est moins fréquente. Les contraintes se distribuent plus largement autour de la région de connexion. Le traitement n’a pas produit d’effet significatif sur la résistance mécanique de l’assemblage dans le cas d’un enfoncement du boulon perpendiculairement au fil du bois. De même, l’effet des nanoparticules en solution n’est pas ressorti significatif. Malgré une pénétration très faible du liquide à l’intérieur du bois, la couche densifiée en surface créée suite au traitement est suffisante pour produire un nouveau matériau plus résistant dans les zones de connexion. Le renfort du bois dans la région des connecteurs doit influencer le dimensionnement des structures de grande taille. Avec des éléments de connexion renforcés, il sera possible d’allonger les portées des poutres, multipliant ainsi les possibilités architecturales. Le renfort pourra aussi permettre de réduire les sections des poutres et d’utiliser une quantité moindre de bois dans un bâtiment. Cela engendrera des coûts de transport et des coûts reliés au temps d’assemblage réduits. De plus, un connecteur plus résistant permettra d’être utilisé en moins grande quantité dans un assemblage. Les coûts d’approvisionnement en éléments métalliques et le temps de pose sur le site pourront être revus à la baisse. Les avantages d’un nouveau matériau à base de bois plus performant utilisé dans les connexions permettront de promouvoir le bois dans les constructions de grande taille et de réduire l’impact environnemental des bâtiments.
Resumo:
Dans l’industrie de l’aluminium, le coke de pétrole calciné est considéré comme étant le composant principal de l’anode. Une diminution dans la qualité du coke de pétrole a été observée suite à une augmentation de sa concentration en impuretés. Cela est très important pour les alumineries car ces impuretés, en plus d’avoir un effet réducteur sur la performance des anodes, contaminent le métal produit. Le coke de pétrole est aussi une source de carbone fossile et, durant sa consommation, lors du processus d’électrolyse, il y a production de CO2. Ce dernier est considéré comme un gaz à effet de serre et il est bien connu pour son rôle dans le réchauffement planétaire et aussi dans les changements climatiques. Le charbon de bois est disponible et est produit mondialement en grande quantité. Il pourrait être une alternative attrayante pour le coke de pétrole dans la fabrication des anodes de carbone utilisées dans les cuves d’électrolyse pour la production de l’aluminium. Toutefois, puisqu’il ne répond pas aux critères de fabrication des anodes, son utilisation représente donc un grand défi. En effet, ses principaux désavantages connus sont sa grande porosité, sa structure désordonnée et son haut taux de minéraux. De plus, sa densité et sa conductivité électrique ont été rapportées comme étant inférieures à celles du coke de pétrole. L’objectif de ce travail est d’explorer l’effet du traitement de chaleur sur les propriétés du charbon de bois et cela, dans le but de trouver celles qui s’approchent le plus des spécifications requises pour la production des anodes. L’évolution de la structure du charbon de bois calciné à haute température a été suivie à l’aide de différentes techniques. La réduction de son contenu en minéraux a été obtenue suite à des traitements avec de l’acide chlorhydrique utilisé à différentes concentrations. Finalement, différentes combinaisons de ces deux traitements, calcination et lixiviation, ont été essayées dans le but de trouver les meilleures conditions de traitement.
Resumo:
Face à la diminution des ressources énergétiques et à l’augmentation de la pollution des énergies fossiles, de très nombreuses recherches sont actuellement menées pour produire de l’énergie propre et durable et pour réduire l’utilisation des sources d’énergies fossiles caractérisées par leur production intrinsèque des gaz à effet de serre. La pile à combustible à membrane échangeuse de protons (PEMFC) est une technologie qui prend de plus en plus d’ampleur pour produire l’énergie qui s’inscrit dans un contexte de développement durable. La PEMFC est un dispositif électrochimique qui fonctionne selon le principe inverse de l’électrolyse de l’eau. Elle convertit l’énergie de la réaction chimique entre l’hydrogène et l’oxygène (ou l’air) en puissance électrique, chaleur et eau; son seul rejet dans l’atmosphère est de la vapeur d’eau. Une pile de type PEMFC est constituée d’un empilement Électrode-Membrane-Électrode (EME) où la membrane consiste en un électrolyte polymère solide séparant les deux électrodes (l’anode et la cathode). Cet ensemble est intégré entre deux plaques bipolaires (BP) qui permettent de collecter le courant électrique et de distribuer les gaz grâce à des chemins de circulation gravés sur chacune de ses deux faces. La plupart des recherches focalisent sur la PEMFC afin d’améliorer ses performances électriques et sa durabilité et aussi de réduire son coût de production. Ces recherches portent sur le développement et la caractérisation des divers éléments de ce type de pile; y compris les éléments les plus coûteux et les plus massifs, tels que les plaques bipolaires. La conception de ces plaques doit tenir compte de plusieurs paramètres : elles doivent posséder une bonne perméabilité aux gaz et doivent combiner les propriétés de résistance mécanique, de stabilité chimique et thermique ainsi qu’une conductivité électrique élevée. Elles doivent aussi permettre d’évacuer adéquatement la chaleur générée dans le cœur de la cellule. Les plaques bipolaires métalliques sont pénalisées par leur faible résistance à la corrosion et celles en graphite sont fragiles et leur coût de fabrication est élevé (dû aux phases d’usinage des canaux de cheminement des gaz). C’est pourquoi de nombreuses recherches sont orientées vers le développement d’un nouveau concept de plaques bipolaires. La voie la plus prometteuse est de remplacer les matériaux métalliques et le graphite par des composites à matrice polymère. Les plaques bipolaires composites apparaissent attrayantes en raison de leur facilité de mise en œuvre et leur faible coût de production mais nécessitent une amélioration de leurs propriétés électriques et mécaniques, d’où l’objectif principal de cette thèse dans laquelle on propose: i) un matériau nanocomposite développé par extrusion bi-vis qui est à base de polymères chargés d’additifs solides conducteurs, incluant des nanotubes de carbone. ii) fabriquer un prototype de plaque bipolaire à partir de ces matériaux en utilisant le procédé de compression à chaud avec un refroidissement contrôlé. Dans ce projet, deux polymères thermoplastiques ont été utilisés, le polyfluorure de vinylidène (PVDF) et le polyéthylène téréphtalate (PET). Les charges électriquement conductrices sélectionnées sont: le noir de carbone, le graphite et les nanotubes de carbones. La combinaison de ces charges conductrices a été aussi étudiée visant à obtenir des formulations optimisées. La conductivité électrique à travers l’épaisseur des échantillons développés ainsi que leurs propriétés mécaniques ont été soigneusement caractérisées. Les résultats ont montré que non seulement la combinaison entre les charges conductrices influence les propriétés électriques et mécaniques des prototypes développés, mais aussi la distribution de ces charges (qui de son côté dépend de leur nature, leur taille et leurs propriétés de surface), avait aidé à améliorer les propriétés visées. Il a été observé que le traitement de surface des nanotubes de carbone avait aidé à l’amélioration de la conductivité électrique et la résistance mécanique des prototypes. Le taux de cristallinité généré durant le procédé de moulage par compression des prototypes de plaques bipolaires ainsi que la cinétique de cristallisation jouent un rôle important pour l’optimisation des propriétés électriques et mécaniques visées.
Resumo:
La carbonatation minérale dans les résidus miniers est un moyen sûr et permanent de séquestrer le CO2 atmosphérique. C’est un processus naturel et passif qui ne nécessite aucun traitement particulier et donc avantageux d’un point de vue économique. Bien que la quantité de CO2 qu’il soit possible de séquestrer selon ce processus est faible à l’échelle globale, dans le cadre d’un marché du carbone, les entreprises minières pourraient obtenir des crédits et ainsi revaloriser leurs résidus. À l’heure actuelle, il y a peu d’informations pour quantifier le potentiel de séquestration du CO2 de façon naturelle et passive dans les piles de résidus miniers. Il est donc nécessaire d’étudier le phénomène pour comprendre comment évolue la réaction à travers le temps et estimer la quantité de CO2 qui peut être séquestrée naturellement dans les piles de résidus. Plusieurs travaux de recherche se sont intéressés aux résidus miniers de Thetford Mines (Québec, Canada), avec une approche principalement expérimentale en laboratoire. Ces travaux ont permis d’améliorer la compréhension du processus de carbonatation, mais ils nécessitent une validation à plus grande échelle sous des conditions atmosphériques réelles. L’objectif général de cette étude est de quantifier le processus de carbonatation minérale des résidus miniers sous des conditions naturelles, afin d’estimer la quantité de CO2 pouvant être piégée par ce processus. La méthodologie utilisée repose sur la construction de deux parcelles expérimentales de résidus miniers situées dans l’enceinte de la mine Black Lake (Thetford Mines). Les résidus miniers sont principalement constitués de grains et de fibres de chrysotile et lizardite mal triés, avec de petites quantités d’antigorite, de brucite et de magnétite. Des observations spatiales et temporelles ont été effectuées dans les parcelles concernant la composition et la pression des gaz, la température des résidus, la teneur en eau volumique, la composition minérale des résidus ainsi que la chimie de l’eau des précipitations et des lixiviats provenant des parcelles. Ces travaux ont permis d’observer un appauvrissement notable du CO2 dans les gaz des parcelles (< 50 ppm) ainsi que la précipitation d’hydromagnésite dans les résidus, ce qui suggère que la carbonatation minérale naturelle et passive est un processus potentiellement important dans les résidus miniers. Après 4 ans d’observations, le taux de séquestration du CO2 dans les parcelles expérimentales a été estimé entre 3,5 et 4 kg/m3/an. Ces observations ont permis de développer un modèle conceptuel de la carbonatation minérale naturelle et passive dans les parcelles expérimentales. Dans ce modèle conceptuel, le CO2 atmosphérique (~ 400 ppm) se dissout dans l’eau hygroscopique contenue dans les parcelles, où l’altération des silicates de magnésium forme des carbonates de magnésium. La saturation en eau dans les cellules est relativement stable dans le temps et varie entre 0,4 et 0,65, ce qui est plus élevé que les valeurs de saturation optimales proposées dans la littérature, réduisant ainsi le transport de CO2 dans la zone non saturée. Les concentrations de CO2 en phase gazeuse, ainsi que des mesures de la vitesse d’écoulement du gaz dans les cellules suggèrent que la réaction est plus active près de la surface et que la diffusion du CO2 est le mécanisme de transport dominant dans les résidus. Un modèle numérique a été utilisé pour simuler ces processus couplés et valider le modèle conceptuel avec les observations de terrain. Le modèle de transport réactif multiphase et multicomposant MIN3P a été utilisé pour réaliser des simulations en 1D qui comprennent l’infiltration d’eau à travers le milieu partiellement saturé, la diffusion du gaz, et le transport de masse réactif par advection et dispersion. Même si les écoulements et le contenu du lixivat simulés sont assez proches des observations de terrain, le taux de séquestration simulé est 22 fois plus faible que celui mesuré. Dans les simulations, les carbonates précipitent principalement dans la partie supérieure de la parcelle, près de la surface, alors qu’ils ont été observés dans toute la parcelle. Cette différence importante pourrait être expliquée par un apport insuffisant de CO2 dans la parcelle, qui serait le facteur limitant la carbonatation. En effet, l’advection des gaz n’a pas été considérée dans les simulations et seule la diffusion moléculaire a été simulée. En effet, la mobilité des gaz engendrée par les fluctuations de pression barométrique et l’infiltration de l’eau, ainsi que l’effet du vent doivent jouer un rôle conséquent pour alimenter les parcelles en CO2.
Resumo:
Les lacs de thermokarst (lacs peu profonds créés par le dégel et l’érosion du pergélisol riche en glace) sont un type unique d’écosystèmes aquatiques reconnus comme étant de grands émetteurs de gaz à effet de serre vers l’atmosphère. Ils sont abondants dans le Québec subarctique et ils jouent un rôle important à l’échelle de la planète. Dans certaines régions, les lacs de thermokarst se transforment rapidement et deviennent plus grands et plus profonds. L’objectif de cette étude était d’améliorer la compréhension et d’évaluer quelles variables sont déterminantes pour la dynamique de l’oxygène dans ces lacs. C’est pourquoi j’ai examiné les possibles changements futurs de la dynamique de l’oxygène dans ces lacs dans un contexte de réchauffement climatique. Une grande variété de méthodes ont été utilisées afin de réaliser cette recherche, dont des analyses in situ et en laboratoire, ainsi que la modélisation. Des capteurs automatisés déployés dans cinq lacs ont mesuré l’oxygène, la conductivité et la température de la colonne d’eau en continu de l’été 2012 jusqu’à l’été 2015, à des intervalles compris entre 10 à 60 minutes. Des analyses en laboratoire ont permis de déterminer la respiration et les taux de production bactériens, les variables géochimiques limnologiques, ainsi que la distribution de la production bactérienne entre les différentes fractions de taille des communautés. La température de l’eau et les concentrations d’oxygène dissous d’un lac de thermokarst ont été modélisées avec des données du passé récent (1971) au climat futur (2095), en utilisant un scénario modéré (RCP 4.5) et un scénario plus extrême (RCP 8.5) de réchauffement climatique. Cette recherche doctorale a mis en évidence les conditions anoxiques fréquentes et persistantes présentes dans de nombreux lacs de thermokarst. Aussi, ces lacs sont stratifiés pendant l’hiver comme des concentrations élevées d’ions s’accumulent dans leurs hypolimnions à cause de la formation du couvert de glace (cryoconcentration) et de la libération des ions avec la respiration bactérienne. Les différences de température contribuent également à la stabilité de la stratification. La dynamique de mélange des lacs de thermokarst étudiés était contrastée : la colonne d’eau de certains lacs se mélangeait entièrement deux fois par année, d’autres lacs se mélangeaient qu’une seule fois en automne, alors que certains lacs ne se mélangeaient jamais entièrement. Les populations bactériennes étaient abondantes et très actives, avec des taux respiratoires comparables à ceux mesurés dans des écosystèmes méso-eutrophes ou eutrophes des zones tempérées de l’hémisphère nord. L’érosion des matériaux contenus dans le sol des tourbières pergélisolées procure un substrat riche en carbone et en éléments nutritifs aux populations bactériennes, et ils constituent des habitats propices à la colonisation par des populations de bactéries associées aux particules. Le modèle de la concentration d’oxygène dissous dans un lac a révélé que le réchauffement des températures de l’air pourrait amincir le couvert de glace et diminuer sa durée, intensifiant le transfert de l’oxygène atmosphérique vers les eaux de surface. Ainsi, la concentration en oxygène dissous dans la colonne d’eau de ce lac augmenterait et les périodes de conditions anoxiques pourraient devenir plus courtes. Finalement, cette thèse doctorale insiste sur le rôle des lacs de thermokarst comme des réacteurs biogéochimiques pour la dégradation du carbone organique, qui était retenu dans les sols gelés, en gaz à effet de serre libérés dans l’atmosphère. L’oxygène est un indicateur sensible du mélange de la colonne d’eau et de la dynamique chimique des lacs, en plus d’être une variable clé des processus métaboliques.
Resumo:
Dans ce projet de recherche, le dépôt des couches minces de carbone amorphe (généralement connu sous le nom de DLC pour Diamond-Like Carbon en anglais) par un procédé de dépôt chimique en phase vapeur assisté par plasma (ou PECVD pour Plasma Enhanced Chemical Vapor deposition en anglais) a été étudié en utilisant la Spectroscopie d’Émission Optique (OES) et l’analyse partielle par régression des moindres carrés (PLSR). L’objectif de ce mémoire est d’établir un modèle statistique pour prévoir les propriétés des revêtements DLC selon les paramètres du procédé de déposition ou selon les données acquises par OES. Deux séries d’analyse PLSR ont été réalisées. La première examine la corrélation entre les paramètres du procédé et les caractéristiques du plasma pour obtenir une meilleure compréhension du processus de dépôt. La deuxième série montre le potentiel de la technique d’OES comme outil de surveillance du procédé et de prédiction des propriétés de la couche déposée. Les résultats montrent que la prédiction des propriétés des revêtements DLC qui était possible jusqu’à maintenant en se basant sur les paramètres du procédé (la pression, la puissance, et le mode du plasma), serait envisageable désormais grâce aux informations obtenues par OES du plasma (particulièrement les indices qui sont reliées aux concentrations des espèces dans le plasma). En effet, les données obtenues par OES peuvent être utilisées pour surveiller directement le processus de dépôt plutôt que faire une étude complète de l’effet des paramètres du processus, ceux-ci étant strictement reliés au réacteur plasma et étant variables d’un laboratoire à l’autre. La perspective de l’application d’un modèle PLSR intégrant les données de l’OES est aussi démontrée dans cette recherche afin d’élaborer et surveiller un dépôt avec une structure graduelle.
Resumo:
La catalyse joue un rôle essentiel dans de nombreuses applications industrielles telles que les industries pétrochimique et biochimique, ainsi que dans la production de polymères et pour la protection de l’environnement. La conception et la fabrication de catalyseurs efficaces et rentables est une étape importante pour résoudre un certain nombre de problèmes des nouvelles technologies de conversion chimique et de stockage de l’énergie. L’objectif de cette thèse est le développement de voies de synthèse efficaces et simples pour fabriquer des catalyseurs performants à base de métaux non nobles et d’examiner les aspects fondamentaux concernant la relation entre structure/composition et performance catalytique, notamment dans des processus liés à la production et au stockage de l’hydrogène. Dans un premier temps, une série d’oxydes métalliques mixtes (Cu/CeO2, CuFe/CeO2, CuCo/CeO2, CuFe2O4, NiFe2O4) nanostructurés et poreux ont été synthétisés grâce à une méthode améliorée de nanocasting. Les matériaux Cu/CeO2 obtenus, dont la composition et la structure poreuse peuvent être contrôlées, ont ensuite été testés pour l’oxydation préférentielle du CO dans un flux d’hydrogène dans le but d’obtenir un combustible hydrogène de haute pureté. Les catalyseurs synthétisés présentent une activité et une sélectivité élevées lors de l’oxydation sélective du CO en CO2. Concernant la question du stockage d’hydrogène, une voie de synthèse a été trouvée pour le composét mixte CuO-NiO, démontrant une excellente performance catalytique comparable aux catalyseurs à base de métaux nobles pour la production d’hydrogène à partir de l’ammoniaborane (aussi appelé borazane). L’activité catalytique du catalyseur étudié dans cette réaction est fortement influencée par la nature des précurseurs métalliques, la composition et la température de traitement thermique utilisées pour la préparation du catalyseur. Enfin, des catalyseurs de Cu-Ni supportés sur silice colloïdale ou sur des particules de carbone, ayant une composition et une taille variable, ont été synthétisés par un simple procédé d’imprégnation. Les catalyseurs supportés sur carbone sont stables et très actifs à la fois dans l’hydrolyse du borazane et la décomposition de l’hydrazine aqueuse pour la production d’hydrogène. Il a été démontré qu’un catalyseur optimal peut être obtenu par le contrôle de l’effet bi-métallique, l’interaction métal-support, et la taille des particules de métal.