2 resultados para Similarity Neighborhoods

em SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distributional semantics tries to characterize the meaning of words by the contexts in which they occur. Similarity of words hence can be derived from the similarity of contexts. Contexts of a word are usually vectors of words appearing near to that word in a corpus. It was observed in previous research that similarity measures for the context vectors of two words depend on the frequency of these words. In the present paper we investigate this dependency in more detail for one similarity measure, the Jensen-Shannon divergence. We give an empirical model of this dependency and propose the deviation of the observed Jensen-Shannon divergence from the divergence expected on the basis of the frequencies of the words as an alternative similarity measure. We show that this new similarity measure is superior to both the Jensen-Shannon divergence and the cosine similarity in a task, in which pairs of words, taken from Wordnet, have to be classified as being synonyms or not.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dependency of word similarity in vector space models on the frequency of words has been noted in a few studies, but has received very little attention. We study the influence of word frequency in a set of 10 000 randomly selected word pairs for a number of different combinations of feature weighting schemes and similarity measures. We find that the similarity of word pairs for all methods, except for the one using singular value decomposition to reduce the dimensionality of the feature space, is determined to a large extent by the frequency of the words. In a binary classification task of pairs of synonyms and unrelated words we find that for all similarity measures the results can be improved when we correct for the frequency bias.