Distributional Similarity of Words with Different Frequencies


Autoria(s): Wartena, Christian
Data(s)

29/04/2013

Resumo

Distributional semantics tries to characterize the meaning of words by the contexts in which they occur. Similarity of words hence can be derived from the similarity of contexts. Contexts of a word are usually vectors of words appearing near to that word in a corpus. It was observed in previous research that similarity measures for the context vectors of two words depend on the frequency of these words. In the present paper we investigate this dependency in more detail for one similarity measure, the Jensen-Shannon divergence. We give an empirical model of this dependency and propose the deviation of the observed Jensen-Shannon divergence from the divergence expected on the basis of the frequencies of the words as an alternative similarity measure. We show that this new similarity measure is superior to both the Jensen-Shannon divergence and the cosine similarity in a task, in which pairs of words, taken from Wordnet, have to be classified as being synonyms or not.

Formato

application/zip

application/pdf

Identificador

http://serwiss.bib.hs-hannover.de/frontdoor/index/index/docId/335

urn:nbn:de:bsz:960-opus-4077

http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bsz:960-opus-4077

http://serwiss.bib.hs-hannover.de/files/335/Synonymlist.zip

http://serwiss.bib.hs-hannover.de/files/335/wartenaDIRcr.pdf

Idioma(s)

eng

Direitos

http://creativecommons.org/licenses/by-nc-nd/3.0/de/deed.de

info:eu-repo/semantics/openAccess

Palavras-Chave #Synonymie #Semantik #Computerlinguistik #Linguistische Informationswissenschaft #Korpus <Linguistik> #ddc:020
Tipo

workingpaper

doc-type:workingpaper