3 resultados para learning design

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the field of control systems it is common to use techniques based on model adaptation to carry out control for plants for which mathematical analysis may be intricate. Increasing interest in biologically inspired learning algorithms for control techniques such as Artificial Neural Networks and Fuzzy Systems is in progress. In this line, this paper gives a perspective on the quality of results given by two different biologically connected learning algorithms for the design of B-spline neural networks (BNN) and fuzzy systems (FS). One approach used is the Genetic Programming (GP) for BNN design and the other is the Bacterial Evolutionary Algorithm (BEA) applied for fuzzy rule extraction. Also, the facility to incorporate a multi-objective approach to the GP algorithm is outlined, enabling the designer to obtain models more adequate for their intended use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design phase of B-spline neural networks is a highly computationally complex task. Existent heuristics have been found to be highly dependent on the initial conditions employed. Increasing interest in biologically inspired learning algorithms for control techniques such as Artificial Neural Networks and Fuzzy Systems is in progress. In this paper, the Bacterial Programming approach is presented, which is based on the replication of the microbial evolution phenomenon. This technique produces an efficient topology search, obtaining additionally more consistent solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fractions is perhaps one of the most complex and difficult topics pupils explore in the early years of schooling. Difficulties in learning this topic may have its genesis in the fact that fractions comprise a multifaceted construct (Kieren, 1995) or can be conceived as being grounded in the instructional approaches employed to teach fractions (Behr, Harel, Post & Lesh, 1993). Thus, students’ limited understanding might be related to how their teachers understand and interpret fractions — it’s thus related with teachers’ knowledge and practice. Although there is a generalized agreement on teachers’ role on/for students learning, most research on fractions focus on students, leaving aside teachers’ role (and their knowledge on the topic). Thus, teachers’ training has in certain respects been left behind. We still know little about how teachers’ knowledge on fractions influences students’ broader view of mathematics, and its connection and evolution within and along schooling. Aimed at conceptualize ways of improving teachers’ knowledge, training and practices, it’s of fundamental importance to access the areas of knowledge (here conceived as mathematical knowledge for teaching (MKT) (Ball, Thames & Phelps, 2008) in which (prospective) teachers are more deficitaries.